Skip to main content

Advertisement

Log in

Implications of immune-mediated metastatic growth on metastatic dormancy, blow-up, early detection, and treatment

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Metastatic seeding of distant organs can occur in the very early stages of primary tumor development. Once seeded, these micrometastases may enter a dormant phase that can last decades. Curiously, the surgical removal of the primary tumor can stimulate the accelerated growth of distant metastases, a phenomenon known as metastatic blow-up. Recent clinical evidence has shown that the immune response can have strong tumor promoting effects. In this work, we investigate if the pro-tumor effects of the immune response can have a significant contribution to metastatic dormancy and metastatic blow-up. We develop an ordinary differential equation model of the immune-mediated theory of metastasis. We include both anti- and pro-tumor immune effects, in addition to the experimentally observed phenomenon of tumor-induced immune cell phenotypic plasticity. Using geometric singular perturbation analysis, we derive a rather simple model that captures the main processes and, at the same time, can be fully analyzed. Literature-derived parameter estimates are obtained, and model robustness is demonstrated through a time dependent sensitivity analysis. We determine conditions under which the parameterized model can successfully explain both metastatic dormancy and blow-up. The results confirm the significant active role of the immune system in the metastatic process. Numerical simulations suggest a novel measure to predict the occurrence of future metastatic blow-up in addition to new potential avenues for treatment of clinically undetectable micrometastases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aguirre-Chiso J (2007) Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 7(11):834–846

    Google Scholar 

  • Avanzini S, Antal T (2019) Cancer recurrence times from a branching process model. PLoS Comput Biol 15(11):e1007423

    Google Scholar 

  • Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357:539–545

    Google Scholar 

  • Benzekry S, Gandolfi A, Hahnfeldt P (2014) Global dormancy of metastases due to systemic inhibition of angiogenesis. PLoS ONE 9(1):e84249

    Google Scholar 

  • Benzekry S, Lamont C, Barbolosi D et al (2017) Mathematical modeling of tumor-tumor distant interactions supports a systemic control of tumor growth. Cancer Res 77(18):5183–5193

    Google Scholar 

  • Benzekry S, Sentis C, Coze C, Tessonnier L, Andre N (2020) Descriptive and prognostic value of a computational model of metastasis in high-risk neuroblastoma. MedRxiv. https://doi.org/10.1101/2020.03.26.20042192

    Article  Google Scholar 

  • Blomberg O, Spagnuolo L, de Visser K (2018) Immune regulation of metastasis: mechanistic insights and therapeutic opportunities. Dis Model Mech. https://doi.org/10.1242/dmm.036236

    Article  Google Scholar 

  • Cameron M et al (2000) Temporal progression of metastasis in lung: cell survival, dormancy, and location dependence of metastatic inefficiency. Cancer Res 60(9):2541–2546

    Google Scholar 

  • Chambers A, Groom A, MacDonald I (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2(8):563–572

    Google Scholar 

  • Chiarella P, Bruzzo J, Meiss R, Ruggiero R (2012) Concomitant tumor resistance. Cancer Lett 324(2):133–141

    Google Scholar 

  • Cohen E, Gao H, Anfossi S et al (2015) Inflammation mediated metastasis: immune induced epithelial-to-mesenchymal transition in inflammatory breast cancer cells. PLoS One 10(7):e0132710

    Google Scholar 

  • Colegio O, Chu N, Szabo A et al (2014) Functional polarization of tumor-associated macrophages by tumour-derived lactic acid. Nature 513:559–563

    Google Scholar 

  • Coughlin C, Murray J (2010) Current and emerging concepts in tumour metastasis. J Pathol. https://doi.org/10.1002/path.2727

    Article  Google Scholar 

  • de Mingo Pulido A, Ruffell B (2016) Immune regulation of the metastatic process: implications for therapy. Adv Cancer Res 132:139–163

    Google Scholar 

  • Del Monte U (2009) Does the cell number \(10^{9}\) still really fit one gram of tumor tissue? Cell Cycle 8(3):505–506

    Google Scholar 

  • den Breems N, Eftimie R (2016) The re-polarisation of M2 and M1 macrophages and its role on cancer outomes. J Theor Biol 390:23–39. https://doi.org/10.1016/j.jtbi.2015.10.063

    Article  MATH  Google Scholar 

  • Dewan M, Galloway A, Kawashima N et al (2009) Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-ctla-4 antibody. Clin Cancer Res 15(17):5379–5388. https://doi.org/10.1158/1078-0432.CCR-09-0265

    Article  Google Scholar 

  • Eftimie R, Bramson J, Earn D (2011) Interactions between the immune system and cancer: a brief review of non-spatial mathematical models. Bull Math Biol 73(1):2–32

    MathSciNet  MATH  Google Scholar 

  • Eikenberry S, Thalhauser C, Kuang Y (2009) Tumor-immune interaction, surgical treatment, and cancer recurrence in a mathematical model of melanoma. PLoS Comput Biol 5(4):e1000362. https://doi.org/10.1371/journal.pcbi.1000362

    Article  MathSciNet  Google Scholar 

  • El-Kenawi A, Gatenby C, Robertson-Tessi M et al (2019) Acidity promotes tumour progression by altering macrophage phenotype in prostate cancer. Brit J Cancer 121:556–566. https://doi.org/10.1038/s41416-019-0542-2

    Article  Google Scholar 

  • Emens L, Ascierto P, Darcy P et al (2017) Cancer immunotherapy: opportunities and challenges in the rapidly evolving clinical landscape. Eur J Cancer 81:116–129

    Google Scholar 

  • Forget P, Vandengende J, Berliere M et al (2010) Do intraoperative analgesics influence breast cancer recurrence after mastectomy? a retrospective analysis. Anesth Analg 110(6):1630–1635

    Google Scholar 

  • Franßen L, Chaplain M (2019) A mathematical multi-organ model for bidirectional epithelial-mesenchymal transitions in the metastatic spread of cancer. BioRxiv. https://doi.org/10.1101/745547

    Article  Google Scholar 

  • Franßen L, Lorenzi T, Burgess A et al (2019) A mathematical framework for modelling the metastatic spread of cancer. Bull Math Biol 81:1965–2010

    MathSciNet  MATH  Google Scholar 

  • Frei C, Hillen T, Rhodes A (2020) A stochastic model for cancer metastasis: branching stochastic process with settlement. Math Med Biol 37(2):153–182

    MathSciNet  Google Scholar 

  • Friberg S, Nystrom A (2015) Cancer metastases: early dissemination and late recurrences. Cancer Growth Metastasis 8:43–49

    Google Scholar 

  • Giancotti F (2013) Mechanisms governing metastatic dormancy and reactivation. Cell 155(4):750–764

    Google Scholar 

  • Goddard E, Bozic I, Riddell S, Ghajar C (2018) Dormant tumour cells, their niches and the influence of immunity. Nat Cell Biol 20(11):1240–1249

    Google Scholar 

  • Gorelik E (1983) Concomitant tumor immunity and the resistance to a second tumor challenge. Adv Cancer Res 39:75–120

    Google Scholar 

  • Griffiths J, Wallet P, Pflieger L, Stenehjem D et al (2020) Circulating immune cell phenotype dynamics reflect the strength of tumor-immune interactions in patients during immunotherapy. Proc Natl Acad Sci USA 117(27):16072–16082

    Google Scholar 

  • Hanin L, Rose J (2018) Suppression of metastasis by primary tumor and acceleration of metastasis following primary tumor resection: A natural law? B Math Biol 80(3):519–539

    MathSciNet  MATH  Google Scholar 

  • Hanin L, Seidel K, Stoevesandt D (2016) A universal model of metastatic cancer, its parametric forms and their identification: what can be learned from site-specific volumes of metastases. J Math Biol 72:1633–1662. https://doi.org/10.1007/s00285-015-0928-6

    Article  MathSciNet  MATH  Google Scholar 

  • Hek G (2010) Geometric singular perturbation theory in biological practice. J Math Biol 60(3):347–386

    MathSciNet  MATH  Google Scholar 

  • Hobson J, Gummadidala P, Silverstrim B et al (2013) Acute inflammation induced by the biopsy of mouse mammary tumors promotes the development of metastasis. Breast Cancer Res Tr 139(2):391–401

    Google Scholar 

  • Jones C (1995) Geometric singular perturbation theory. In: Russell J (ed) Dynamical systems, 2nd session of the centro internazionale matematico estivo (CIME). Springer, Berlin, pp 44–118

    Google Scholar 

  • Joyce J, Pollard J (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9(4):239–252. https://doi.org/10.1038/nrc2618

    Article  Google Scholar 

  • Kaplan R, Riba R, Zacharoulis S et al (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:820–827. https://doi.org/10.1038/nature04186

    Article  Google Scholar 

  • Kim Y, Jeon H, Othmer H (2017) The role of the tumor microenvironment in glioblastoma: a mathematical model. IEEE Trans Biomed Eng 64(3):519–527

    Google Scholar 

  • Kumar G, Manjunatha B (2013) Metastatic tumors to the jaws and oral cavity. J Oral Maxillofac Pathol 17(1):71–75

    Google Scholar 

  • Kuznetsov V, Makalkin V, Taylor I et al (1994) Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis. Bull Math Biol 50(2):295–321

    MATH  Google Scholar 

  • Lai X, Friedman A (2019) How to schedule VEGF and PD-1 inhibitors in combination cancer therapy? BMC Syst Biol 13(1):30

    Google Scholar 

  • Liao K, Bai X, Friedman A (2013) The role of CD200-CD200R in tumor immune evasion. J Theor Biol 328:65–76

    MATH  Google Scholar 

  • Liao K, Bai X, Friedman A (2014) A mathematical modeling of interleukin-35 promoting tumor growth and angiogenesis. PLoS One 9(10):e110126

    Google Scholar 

  • Liu V, Wong L, Jang T et al (2007) Tumor evasion of the immune system by converting CD4+CD25- T cells into CD4+CD25+ T regulatory cells: role of tumor-derived TGF-\(\beta \). J Immunol 178:2883–2892

    Google Scholar 

  • Liu Y, Cao X (2016) Immunosuppressive cells in tumor immune escape and metastasis. J Mol Med 94(5):509–522. https://doi.org/10.1007/s00109-015-1376-x

    Article  Google Scholar 

  • Luzzi K et al (1998) Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am J Pathol. https://doi.org/10.1016/S0002-9440(10)65628-3

    Article  Google Scholar 

  • Maida V, Ennis M, Kuziemsky C, Corban J (2009) Wounds and survival in cancer patients. Eur J Cancer 45(18):3237–3244

    Google Scholar 

  • Marx J (2004) Inflammation and cancer: the link grows stronger. Science 306(5698):966–968

    Google Scholar 

  • Michelson S, Leith J (1994) Dormancy, regression and recurrence: towards a unifying theory of tumor growth control. J Theor Biol 169:327–338

    Google Scholar 

  • Michelson S, Leith J (1995) A theoretical explanation of concomitant resistance. Bull Math Biol 57(5):733–747

    MATH  Google Scholar 

  • Neophytou C, Kyriakou T, Papageorgis P (2019) Mechanisms of metastatic tumor dormancy and implications for cancer therapy. Int J Mol Sci 20(24):6158

    Google Scholar 

  • Norton K, Jin K, Popel AS (2018) Modeling triple-negative breast cancer heterogeneity: effects of stromal macrophages, fibroblasts and tumor vasculature. J Theor Biol 452:56–68

    Google Scholar 

  • Oleinika K, Nibbs R, Graham G et al (2013) Suppression, subversion and escape: the role of regulatory t cells in cancer progression. Clin Exp Immunol 171(1):36–45

    Google Scholar 

  • Olobatuyi O, de Vries G, Hillen T (2017) A reaction-diffusion model for radiation-induced bystander effects. J Math Biol 75(2):341–372

    MathSciNet  MATH  Google Scholar 

  • Park C, Hartl C, Schmid D et al (2018) Extended release of perioperative immunotherapy prevents tumor recurrence and eliminates metastases. Sci Transl Med 10(433):eaar1916

    Google Scholar 

  • Pascual M, Alonso S, Pares D et al (2010) Randomized clinical trial comparing inflammatory and angiogenic response after open versus laparoscopic curative resection for colonic cancer. Brit J Surg 98:50–59

    Google Scholar 

  • Poleszczuk J, Luddy K, Prokopiou S et al (2016) Abscopal benefits of localized radiotherapy depend on activated T-cell trafficking and distribution between metastatic lesions. Cancer Res 76(5):1009–1018. https://doi.org/10.1158/0008-5472.CAN-15-1423

    Article  Google Scholar 

  • Prehn R (1993) Two competing influences that may explain concomitant tumor resistance. Cancer Res 53(14):3266–3269

    Google Scholar 

  • Retsky M, Demicheli R, Hrushesky W et al (2013) Reduction of breast cancer relapses with perioperative non-steroidal anti-inflammatory drugs: new findings and a review. Curr Med Chem 20(33):4163–4176

    Google Scholar 

  • Rhodes A, Hillen T (2019) A mathematical model of the immune-mediated theory of metastasis. J Theor Biol 482:109999

    MathSciNet  MATH  Google Scholar 

  • Riggi N, Auget M, Stamenkovic I (2018) Cancer metastasis: a reappraisal of its underlying mechanisms and their relevance to treatment. Annu Rev Pathol Mech 13:117–140

    Google Scholar 

  • Robertson-Tessi M, El-Kareh A, Goriely A (2012) A mathematical model of tumor-immune interactions. J Theor Biol 294:56–73

    MathSciNet  MATH  Google Scholar 

  • Ruggiero R, Bruzzo J, Chiarella P, Bustuoabad O et al (2012) Concomitant tumor resistance: the role of tyrosine isomers in the mechanisms of metastases control. Cancer Res 72(5):1043–1050

    Google Scholar 

  • Shahriyari L (2016) A new hypothesis: some metastases are the result of inflammatory processes by adapted cells, especially adapted immune cells at sites of inflammation. F1000Research. https://doi.org/10.12388/f1000research.8055.1

    Article  Google Scholar 

  • Tyzzer E (1913) Factors in the production and growth of tumor metastases. J Med Res 28(2):309–332

    Google Scholar 

  • Valastyan S, Weinberg R (2011) Tumor metastasis: molecular insights and evolving paradigms. Cell 147(2):275–292. https://doi.org/10.1016/j.cell.2011.09.024

    Article  Google Scholar 

  • Walker R, Poleszczuk J, Pilon-Thomas S et al (2018) Immune interconnectivity of anatomically distant tumors as a potential mediator of systemic responses to local therapy. Sci Rep 8(1):1–11

    Google Scholar 

  • Walker R, Schoenfeld J, Pilon-Thomas S et al (2017) Evaluating the potential for maximized T cell redistribution entropy to improve abscopal responses to radiotherapy. Converg Sci Phys Oncol 3:034001

    Google Scholar 

  • Walter N, Rice P, Redente E et al (2011) Wound healing after trauma may predispose to lung cancer metastasis: Review of potential mechanisms. Am J Resp Cell Mol 44(5):591–596. https://doi.org/10.1165/rcmb.2010-0187RT

    Article  Google Scholar 

  • Weiss L (1990) Metastatic inefficiency. Adv Cancer Res 54:159–211

    Google Scholar 

  • Wilkie K (2013) A review of mathematical models of cancer-immune interactions in the context of tumor dormancy. In: Enderling H, Almong N, Hlatky L (eds) Systems biology of tumor dormancy. Springer, Berlin, pp 201–234

    Google Scholar 

  • Wilkie K, Aktar F (2020) Mathematically modeling inflammation as a promoter of tumour growth. BioRxiv. https://doi.org/10.1101/2020.03.08.982918

    Article  Google Scholar 

  • Wilkie K, Hahnfeldt P (2017) Modeling the dichotomy of the immune response to cancer: cytotoxic effects and tumor-promoting inflammation. Bull Math Biol 79(6):1426–1448

    MathSciNet  MATH  Google Scholar 

  • Yang Z, Tang X, Meng G et al (2019) Latent cytomegalovirus infection in female mice increases breast cancer metastasis. Cancers 11(447):1–20

    Google Scholar 

Download references

Acknowledgements

We would like to thank the referees for their helpful detailed comments. AR gratefully acknowledges support from an Alberta Innovates Graduate Student Scholarship. TH is supported by an NSERC Discovery Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Rhodes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Here we prove Proposition 3 and provide additional details concerning the parameter sensitivity analysis reported in Fig. 4. We begin by proving Proposition 3.

Table 3 Details of the parameter sensitivity analysis depicted in Fig. 4

Proof

Consider \((u,x(u), y(u))\in {\mathcal {M}}\). We compute the derivatives \(x_{u}(u)\) and \(y_{u}(u)\). We begin with \(x_{u}\):

$$\begin{aligned} \begin{aligned} x_{u}(u)&= \partial _{u}\left( \frac{\alpha }{-\left( \lambda (u) - \rho u - \omega - ed(u)\right) }\right) \\&= \frac{\alpha \left( \lambda '(u) - \rho - ed'(u)\right) }{\left( \lambda (u) - \rho u - \omega - ed(u)\right) ^{2}}. \end{aligned} \end{aligned}$$
(14)

The sign of \(x_{u}\) depends entirely on the sign of

$$\begin{aligned} \lambda '(u) - \rho - ed'(u). \end{aligned}$$

With the choices we made for \(\lambda (u)\) and ed(u), we arrive at the following chain of equivalent conditions:

$$\begin{aligned} \begin{aligned} x_{u}(u)&> 0\\ \lambda '(u) - \rho - ed'(u)&> 0\\ \frac{a_{1}b_{1}}{(b_{1}+u)^{2}} - \rho - \chi&> 0\\ \frac{a_{1}b_{1}}{\rho + \chi }&> (b_{1}+u)^{2}\\ 0&> u^{2} + 2b_{1}u + b_{1}^{2} - \frac{a_{1}b_{1}}{\rho + \chi }. \end{aligned} \end{aligned}$$
(15)

The roots to the above quadratic are given by

$$\begin{aligned} u_{+,-} = -b_{1} \pm \sqrt{\frac{a_{1}b_{1}}{\rho + \chi }}. \end{aligned}$$
(16)

This gives distinct, real roots (assuming that \(a_{1}b_{1}\ne 0\)) with at least one of them negative. If \(u_{+} > 0\), then we see that \(x_{u} > 0\) for \(u < u_{+}\) and negative otherwise. If \(u_{+} < 0\), then we simply have \(x_{u} < 0\) for all non-negative u.

Next, we consider \(y_{u}\). We show simply that \(y_{u}\) is non-negative, as

$$\begin{aligned} \begin{aligned} y_{u}(u)&= \partial _{u}\left( \frac{\psi + ed(u)x(u)}{-\left( f(u) - \tau \right) }\right) \\&= \frac{-(ed'(u)x(u) + ed(u)x_{u}(u))(f(u) - \tau ) + (q\psi + ed(u)x(u))f'(u)}{(f(u) - \tau )^{2}}\\&\ge \frac{-(ed'(u)x(u) + ed(u)x_{u}(u))(f(u) - \tau )}{(f(u) - \tau )^{2}}. \end{aligned}\nonumber \\ \end{aligned}$$
(17)

The final inequality results from the fact that \((\psi + ed(u)x(u))f'(u) \ge 0\) since f is increasing (A1). Now, we can use the expressions for x(u) and \(x_{u}\), as well as our choice of \(ed(u) = \chi u\) to arrive at

$$\begin{aligned} \begin{aligned} (17) =&\left[ \frac{\chi \alpha }{-(\lambda (u) - \rho u - \omega - ed(u))} + \frac{\chi u \alpha (\lambda '(u) - \rho - ed'(u))}{(\lambda (u) - \rho u - \omega - ed(u))^{2}}\right] (\tau - f(u)) \\ =&\frac{\chi \alpha }{-(\lambda (u) - \rho u - \omega - ed(u))}(\tau - f(u))\left[ 1 - \frac{u(\lambda '(u) - \rho - ed'(u))}{\lambda (u) - \rho u - \omega - ed(u)}\right] . \end{aligned}\nonumber \\ \end{aligned}$$
(18)

The sign of this expression depends only on the sign of the term

$$\begin{aligned} \left[ 1 - \frac{u(\lambda '(u) - \rho - ed'(u))}{\lambda (u) - \rho u - \omega - ed(u)}\right] = \frac{\lambda (u) - \omega - ed(u) - \lambda '(u)u + ed'(u)u}{\lambda (u) - \rho u - \omega - ed(u)}. \end{aligned}$$

By assumption (A2), the denominator is always negative, and therefore the sign of the above expression is determined by the sign of its numerator. With the choices for ed(u) and \(\lambda (u)\) from Sect. 2.3, the numerator simplifies to

$$\begin{aligned} \frac{u^{2}(a_{1} - \omega ) - 2b_{1}\omega u - \omega b_{1}^{2}}{(b_{1}+u)^{2}}. \end{aligned}$$

Using the fact that \(a_{1}-\omega < 0\) (A2) guarantees that the quadratic is negative for all \(u \ge 0\), and therefore \(y_{u}(u) \ge 0\) for all \(u \ge 0\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rhodes, A., Hillen, T. Implications of immune-mediated metastatic growth on metastatic dormancy, blow-up, early detection, and treatment. J. Math. Biol. 81, 799–843 (2020). https://doi.org/10.1007/s00285-020-01521-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-020-01521-x

Keywords

Mathematics Subject Classification

Navigation