Skip to main content

Advertisement

Log in

Destruction of the stem cell Niche, Pathogenesis and Promising Treatment Targets for Primary Scarring Alopecias

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The Primary Scarring Alopecias are characterised by the irreversible destruction and fibrosis of hair follicles, leading to permanent and often disfiguring loss of hair. The pathophysiology of these diseases is not well understood. However, follicular-fibrosis and loss of the stem-cell niche appears to be a common theme. This review explores the pathogenesis of primary scarring alopecias, asking what happens to the stem cells of the hair follicle and how they may contribute to the progression of these diseases. Bulge-resident cells are lost (leading to loss of capacity for hair growth) from the follicle either by inflammatory-mediate apoptosis or through epigenetic reprogramming to assume a mesenchymal-like identity. What proportion of bulge cells is lost to which process is unknown and probably differs depending on the individual PCA and its specific inflammatory cell infiltrate. The formation of fibroblast-like cells from follicular stem cells may also mean that the cells of the bulge have a direct role in the pathogenesis. The identification of specific cells involved in the pathogenesis of these diseases could provide unique diagnostic and therapeutic opportunities to prevent disease progression by preventing EMT and specific pro-fibrotic signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alonso, L., & Fuchs, E. (2006). The hair cycle. Journal of Cell Science [Internet], 119(Pt 3), 391–393 http://www.ncbi.nlm.nih.gov/pubmed/16443746.

    CAS  Google Scholar 

  2. Katoulis, A. C., Christodoulou, C., Liakou, A. I., Kouris, A., Korkoliakou, P., Kaloudi, E., et al. (2015). Quality of life and psychosocial impact of scarring and non-scarring alopecia in women. JDDG Journal der Dtsch Dermatologischen Gesellschaft [Internet], 13(2), 137–141. https://doi.org/10.1111/ddg.12548 Quality of life and psychosocial impact of scarring and non-scarring alopecia in women.

    Article  Google Scholar 

  3. Templeton SF, Solomon AR. (1994) Scarring alopecia: A classification based on microscopic criteria. Journal of Cutaneous Pathology. Wiley/Blackwell (10.1111); [cited 2018 Jul 18]; 21(2):97–109. Available from: https://doi.org/10.1111/j.1600-0560.1994.tb00243.x.

  4. Rongioletti, F., & Christana, K. (2012). Cicatricial (scarring) alopecias: an overview of pathogenesis, classification, diagnosis, and treatment. American Journal of Clinical Dermatology [Internet], 13(4), 247–260 http://www.ncbi.nlm.nih.gov/pubmed/22494477.

    Google Scholar 

  5. Ohyama, M. (2012). Primary cicatricial alopecia: recent advances in understanding and management. The Journal of Dermatology [Internet], 39(1), 18–26. https://doi.org/10.1111/j.1346-8138.2011.01416.x Primary cicatricial alopecia: Recent advances in understanding and management.

    Article  CAS  Google Scholar 

  6. Harries, M. J., & Paus, R. (2010). The pathogenesis of Primary Cicatricial Alopecias. The American Journal of Pathology [Internet], 177(5), 2152–2162 http://linkinghub.elsevier.com/retrieve/pii/S0002944010602672.

    CAS  Google Scholar 

  7. McElwee, K. J. (2008). Etiology of cicatricial alopecias: a basic science point of view. Dermatologic Therapy [Internet], 21(4), 212–220. https://doi.org/10.1111/j.1529-8019.2008.00202.x Etiology of cicatricial alopecias: a basic science point of view.

    Article  Google Scholar 

  8. Dogra, S., & Sarangal, R. (2014). What’s new in cicatricial alopecia? Indian Journal of Dermatology, Venereology and Leprology [Internet], 79(5), 576–590 http://www.ijdvl.com/text.asp?2013/79/5/576/116726.

    Google Scholar 

  9. Mirmirani, P., Willey, A., Headington, J. T., Stenn, K., McCalmont, T. H., & Price, V. H. (2005). Primary cicatricial alopecia: Histopathologic findings do not distinguish clinical variants. Journal of the American Academy of Dermatology, 52(4), 637–643.

    PubMed  Google Scholar 

  10. Cotsarelis, G. (2006). Epithelial Stem Cells: A Folliculocentric View. Journal of Investigative Dermatology. Elsevier Masson SAS [Internet], Epithelial Stem Cells: A Folliculocentric View, 126(7), 1459–1468. https://doi.org/10.1038/sj.jid.5700376.

  11. Ross EK, Tan E, Shapiro J. (2005) Update on primary cicatricial alopecias. Journal of the American Academy of Dermatology [Internet]. Mosby; [cited 2018 Jul 17];53(1):1–37. Available from: https://www.sciencedirect.com/science/article/pii/S0190962204016093?via%3Dihub

  12. Harries, M. J., Meyer, K. C., & Paus, R. (2009). Hair loss as a result of cutaneous autoimmunity: Frontiers in the immunopathogenesis of primary cicatricial alopecia. Autoimmunity Reviews. Elsevier B.V. [Internet], 8(6), 478–483. https://doi.org/10.1016/j.autrev.2008.09.003 Hair loss as a result of cutaneous autoimmunity: Frontiers in the immunopathogenesis of primary cicatricial alopecia.

    Article  CAS  Google Scholar 

  13. Harries, M. J., Meyer, K., Chaudhry, I., Kloepper, J., Poblet, E., Griffiths, C. E. M., et al. (2013). Lichen planopilaris is characterized by immune privilege collapse of the hair follicle’s epithelial stem cell niche. The Journal of Pathology [Internet], 231(2), 236–247. https://doi.org/10.1002/path.4233 Lichen planopilaris is characterized by immune privilege collapse of the hair follicle's epithelial stem cell niche.

    Article  CAS  Google Scholar 

  14. Trachsler, S., & Trüeb, R. M. (2005). Value of direct immunofluorescence for differential diagnosis of Cicatricial alopecia. Dermatology [Internet], 211(2), 98–102 https://www.karger.com/Article/FullText/86436.

    Google Scholar 

  15. Ladizinski, B., Bazakas, A., Selim, M. A., & Olsen, E. A. (2013). Frontal fibrosing alopecia: A retrospective review of 19 patients seen at Duke University. Journal of the American Academy of Dermatology. Elsevier Inc [Internet], 68(5), 749–755. https://doi.org/10.1016/j.jaad.2012.09.043.

    Article  Google Scholar 

  16. Aldoori, N., Dobson, K., Holden, C. R., McDonagh, A. J., Harries, M., & Messenger, A. G. (2016). Frontal fibrosing alopecia: possible association with leave-on facial skin care products and sunscreens; a questionnaire study. The British Journal of Dermatology [Internet], 175(4), 762–767. https://doi.org/10.1111/bjd.14535 Frontal fibrosing alopecia: possible association with leave-on facial skin care products and sunscreens; a questionnaire study.

    Article  CAS  Google Scholar 

  17. Viglizzo, G., Verrini, A., & Rongioletti, F. (2004). Familial Lassueur-Graham-Little-Piccardi Syndrome. Dermatology [Internet], 208(2), 142–144 https://www.karger.com/Article/FullText/76489.

    Google Scholar 

  18. László, F. G. (2014). Graham-Little-Piccardi-Lasseur syndrome: case report and review of the syndrome in men. International Journal of Dermatology [Internet], 53(8), 1019–1022. https://doi.org/10.1111/j.1365-4632.2012.05672.x Graham-Little-Piccardi-Lasseur syndrome: case report and review of the syndrome in men.

    Article  Google Scholar 

  19. Khumalo, N. P., & Gumedze, F. (2012). Traction: Risk factor or coincidence in central centrifugal cicatricial alopecia? The British Journal of Dermatology, 167(5), 1191–1193.

    PubMed  CAS  Google Scholar 

  20. Dlova, N. C., Jordaan, F. H., Sarig, O., & Sprecher, E. (2014). Autosomal dominant inheritance of central centrifugal cicatricial alopecia in black south Africans. Journal of the American Academy of Dermatology. Elsevier Inc [Internet], 70(4), 679–682.e1. https://doi.org/10.1016/j.jaad.2013.11.035.

    Article  Google Scholar 

  21. Khumalo, N. P., Jessop, S., Gumedze, F., & Ehrlich, R. (2007). Hairdressing and the prevalence of scalp disease in African adults. The British Journal of Dermatology [Internet], 157(5), 981–988 http://www.ncbi.nlm.nih.gov/pubmed/17725667.

    PubMed  CAS  Google Scholar 

  22. Williams, R. F., Hoang, M. P., Kroshinsky, D., & Smith, G. P. (2017). Infliximab-induced follicular mucinosis of the face. International Journal of Dermatology [Internet], 56(2), 215–217. https://doi.org/10.1111/ijd.13335 Infliximab-induced follicular mucinosis of the face.

    Article  Google Scholar 

  23. Turegano, M. M., & Sperling, L. C. (2017). Lichenoid folliculitis: A unifying concept. Journal of Cutaneous Pathology [Internet], 44(7), 647–654. https://doi.org/10.1111/cup.12938 Lichenoid folliculitis: A unifying concept.

    Article  Google Scholar 

  24. Chiarini, C., Torchia, D., Bianchi, B., Volpi, W., Caproni, M., & Fabbri, P. (2008). Immunopathogenesis of folliculitis decalvans: clues in early lesions. American Journal of Clinical Pathology [Internet], 130(4), 526–534 http://www.ncbi.nlm.nih.gov/pubmed/18794044.

    CAS  Google Scholar 

  25. East-Innis, A. D. C., Stylianou, K., Paolino, A., & Ho, J. D. (2017). Acne keloidalis nuchae: risk factors and associated disorders - a retrospective study. International Journal of Dermatology [Internet], 56(8), 828–832 http://www.ncbi.nlm.nih.gov/pubmed/28664654.

    Google Scholar 

  26. Pitney, L. K., O’Brien, B., & Pitney, M. J. (2018). Acne necrotica (necrotizing lymphocytic folliculitis): An enigmatic and under-recognised dermatosis. The Australasian Journal of Dermatology [Internet], 59(1), e53–e58. https://doi.org/10.1111/ajd.12592 Acne necrotica (necrotizing lymphocytic folliculitis): An enigmatic and under-recognised dermatosis.

    Article  Google Scholar 

  27. Fukui, T., Kitamura, H., Harada, K., Nakano, H., & Sawamura, D. (2017). Trichoscopic findings of erosive Pustular Dermatosis of the scalp associated with Gefitinib. Case Reports in Dermatology [Internet], 9(2), 44–49. https://doi.org/10.1159/000475543.

    Article  Google Scholar 

  28. Starace, M., Loi, C., Bruni, F., Alessandrini, A., Misciali, C., Patrizi, A., et al. (2017). Erosive pustular dermatosis of the scalp: Clinical, trichoscopic, and histopathologic features of 20 cases. Journal of the American Academy of Dermatology. Elsevier Inc [Internet], 76(6), 1109–1114.e2. https://doi.org/10.1016/j.jaad.2016.12.016.

    Article  Google Scholar 

  29. Billero, V., & Miteva, M. (2018). Traction alopecia: The root of the problem. Clinical, Cosmetic and Investigational Dermatology [Internet], 11, 149–159 https://www.dovepress.com/traction-alopecia-the-root-of-the-problem-peer-reviewed-article-CCID.

    PubMed  PubMed Central  Google Scholar 

  30. Khumalo, N. P., Jessop, S., Gumedze, F., & Ehrlich, R. (2008). Determinants of marginal traction alopecia in African girls and women. Journal of the American Academy of Dermatology [Internet], 59(3), 432–438 http://www.ncbi.nlm.nih.gov/pubmed/18694677.

    PubMed  Google Scholar 

  31. Buffoli, B., Rinaldi, F., Labanca, M., Sorbellini, E., Trink, A., Guanziroli, E., et al. (2014). The human hair: from anatomy to physiology. International Journal of Dermatology [Internet], 53(3), 331–341 http://www.ncbi.nlm.nih.gov/pubmed/24372228.

    Google Scholar 

  32. Legué, E., & Nicolas, J.-F. (2005). Hair follicle renewal: organization of stem cells in the matrix and the role of stereotyped lineages and behaviors. Development [Internet], 132(18), 4143–4154. https://doi.org/10.1242/dev.01975 Hair follicle renewal: organization of stem cells in the matrix and the role of stereotyped lineages and behaviors.

    Article  CAS  Google Scholar 

  33. Myung, P., & Ito, M. (2012). Dissecting the bulge in hair regeneration. The Journal of Clinical Investigation, 122(2), 448–454.

    PubMed  PubMed Central  CAS  Google Scholar 

  34. Gonzales, K. A. U., & Fuchs, E. (2017). Skin and Its Regenerative Powers: An Alliance between Stem Cells and Their Niche. Developmental Cell. Elsevier Inc. [Internet], 43(4), 387–401. https://doi.org/10.1016/j.devcel.2017.10.001.

    Article  CAS  Google Scholar 

  35. Plikus, M. V., Gay, D. L., Treffeisen, E., Wang, A., Supapannachart, R. J., & Cotsarelis, G. (2012). Epithelial stem cells and implications for wound repair. Seminars in Cell & Developmental Biology [Internet], 23(9), 946–953 http://www.ncbi.nlm.nih.gov/pubmed/23085626.

    CAS  Google Scholar 

  36. Boehnke, K., Falkowska-Hansen, B., Stark, H. J., & Boukamp, P. (2012). Stem cells of the human epidermis and their niche: Composition and function in epidermal regeneration and carcinogenesis. Carcinogenesis, 33(7), 1247–1258.

    PubMed  CAS  Google Scholar 

  37. Purba, T. S., Haslam, I. S., Poblet, E., Jiménez, F., Gandarillas, A., Izeta, A., et al. (2014). Human epithelial hair follicle stem cells and their progeny: Current state of knowledge, the widening gap in translational research and future challenges. BioEssays [Internet], 36(5), 513–525. https://doi.org/10.1002/bies.201300166 Human epithelial hair follicle stem cells and their progeny: Current state of knowledge, the widening gap in translational research and future challenges.

    Article  CAS  Google Scholar 

  38. Cotsarelis, G., Sun, T. T., & Lavker, R. M. (1990). Label-retaining cells reside in the bulge area of pilosebaceous unit: Implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell., 61(7), 1329–1337.

    PubMed  CAS  Google Scholar 

  39. Ito, M., Liu, Y., Yang, Z., Nguyen, J., Liang, F., & Morris, R. J. (2005). Cotsarelis G Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nature Medicine [Internet], 11(12), 1351–1354 http://www.nature.com/articles/nm1328.

    CAS  Google Scholar 

  40. Inoue, K., Aoi, N., Sato, T., Yamauchi, Y., Suga, H., Eto, H., et al. (2009). Differential expression of stem-cell-associated markers in human hair follicle epithelial cells. Laboratory Investigation. Nature Publishing Group [Internet], 89(8), 844–856. https://doi.org/10.1038/labinvest.2009.48.

    Article  CAS  Google Scholar 

  41. Morris, R. J., Liu, Y., Marles, L., Yang, Z., Trempus, C., Li, S., et al. (2004). Capturing and profiling adult hair follicle stem cells. Nature Biotechnology, 22(4), 411–417. https://doi.org/10.1038/nbt950 Capturing and profiling adult hair follicle stem cells.

    Article  PubMed  CAS  Google Scholar 

  42. Ohyama, M., Terunuma, A., Tock, C. L., Radonovich, M. F., Pise-Masison, C. A., Hopping, S. B., et al. (2006). Characterization and isolation of stem cell-enriched human hair follicle bulge cells. The Journal of Clinical Investigation [Internet], 116(1), 249–260 http://www.ncbi.nlm.nih.gov/pubmed/16395407.

    CAS  Google Scholar 

  43. Nowak, J. A., Polak, L., Pasolli, H. A., & Fuchs, E. (2008). Hair follicle stem Cells are specified and function in early skin morphogenesis. Cell Stem Cell [Internet], 3(1), 33–43 http://linkinghub.elsevier.com/retrieve/pii/S1934590908002233.

    PubMed Central  CAS  Google Scholar 

  44. Jaks, V., Barker, N., Kasper, M., van Es, J. H., Snippert, H. J., & Clevers, H. (2008). Toftgård R Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nature Genetics [Internet], 40(11), 1291–1299 http://www.nature.com/articles/ng.239.

    CAS  Google Scholar 

  45. Yang, H., Adam, R. C., Ge, Y., Hua, Z. L., & Fuchs, E. (2017). Epithelial-Mesenchymal micro-niches govern stem Cell lineage choices. Cell. Elsevier Inc. [Internet], 169(3), 483–496.e13. https://doi.org/10.1016/j.cell.2017.03.038.

    Article  CAS  Google Scholar 

  46. Sellheyer K, Atanaskova-Mesinkovska N, Nelson P, Bergfeld WF (2011) Differential expression of stem cell markers in lichen planopilaris and alopecia areata. Vol. 165, British Journal of dermatology [Internet]. Wiley/Blackwell (10.1111); [cited 2018 Jul 18]. p. 1149–51. Available from: https://doi.org/10.1111/j.1365-2133.2011.10491.x

  47. Nishimura, E. K., Jordan, S. A., Oshima, H., Yoshida, H., Osawa, M., Moriyama, M., Jackson, I. J., Barrandon, Y., & Miyachi, Y. (2002). Nishikawa SI Dominant role of the niche in melanocyte stem-cell fate determination. Nature, 416(6883), 854–860.

    PubMed  CAS  Google Scholar 

  48. Nishimura, E. K., Granter, S. R., & Fisher, D. E. (2005). Mechanisms of hair graying: Incomplete melanocyte stem cell maintenance in the niche. Science (80-), 307(5710), 720–724.

    CAS  Google Scholar 

  49. Jensen, U. B., Yan, X., Triel, C., Woo, S.-H., Christensen, R., & Owens, D. M. (2008). A distinct population of clonogenic and multipotent murine follicular keratinocytes residing in the upper isthmus. Journal of Cell Science [Internet], 121(5), 609–617. https://doi.org/10.1242/jcs.025502 A distinct population of clonogenic and multipotent murine follicular keratinocytes residing in the upper isthmus.

    Article  CAS  Google Scholar 

  50. Nijhof, J. G. W., Braun, K. M., Giangreco, A., van Pelt, C., Kawamoto, H., Boyd, R. L., et al. (2006). The cell-surface marker MTS24 identifies a novel population of follicular keratinocytes with characteristics of progenitor cells. Development [Internet], 133(15), 3027–3037. https://doi.org/10.1242/dev.02443 The cell-surface marker MTS24 identifies a novel population of follicular keratinocytes with characteristics of progenitor cells.

    Article  CAS  Google Scholar 

  51. Jensen, K. B., Collins, C. A., Nascimento, E., Tan, D. W., Frye, M., Itami, S., et al. (2009). Lrig1 Expression Defines a Distinct Multipotent Stem Cell Population in Mammalian Epidermis. Cell Stem Cell. Elsevier Ltd [Internet], 4(5), 427–439. https://doi.org/10.1016/j.stem.2009.04.014.

    Article  CAS  Google Scholar 

  52. Snippert, H. J., Haegebarth, A., Kasper, M., Jaks, V., van Es, J. H., Barker, N., et al. (2010). Lgr6 Marks Stem Cells in the Hair Follicle That Generate All Cell Lineages of the Skin. Science (80-) [Internet], 327(5971), 1385–1389. https://doi.org/10.1126/science.1184733 Lgr6 Marks Stem Cells in the Hair Follicle That Generate All Cell Lineages of the Skin.

    Article  CAS  Google Scholar 

  53. Rompolas, P., Deschene, E. R., Zito, G., Gonzalez, D. G., Saotome, I., & Haberman, A. M. (2012). Greco V Live imaging of stem cell and progeny behaviour in physiological hair-follicle regeneration. Nature [Internet], 487(7408), 496–499 http://www.nature.com/articles/nature11218.

    CAS  Google Scholar 

  54. Plikus, M. V. (2012). New Activators and Inhibitors in the Hair Cycle Clock: Targeting Stem Cells’ State of Competence. Journal of Investigative Dermatology. Elsevier Masson SAS [Internet], 132(5), 1321–1324. https://doi.org/10.1038/jid.2012.38.

    Article  CAS  Google Scholar 

  55. Chi, W., Wu, E., & Morgan, B. A. (2013). Dermal papilla cell number specifies hair size, shape and cycling and its reduction causes follicular decline. Development [Internet], 140(8), 1676–1683. https://doi.org/10.1242/dev.090662 Dermal papilla cell number specifies hair size, shape and cycling and its reduction causes follicular decline.

    Article  CAS  Google Scholar 

  56. Elliott, K., Messenger, A. G., & Stephenson, T. J. (1999). Differences in Hair Follicle Dermal Papilla Volume are Due to Extracellular Matrix Volume and Cell Number: Implications for the Control of Hair Follicle Size and Androgen Responses. Journal of Investigative Dermatology. Elsevier Masson SAS [Internet], 113(6), 873–877. https://doi.org/10.1046/j.1523-1747.1999.00797.x.

    Article  CAS  Google Scholar 

  57. Reynolds, A. J., Lawrence, C., Cserhalmi-Friedman, P. B., Christiano, A. M., & Jahoda, C. A. B. (1999). Trans-gender induction of hair follicles. Nature [Internet], 402(6757), 33–34 http://www.nature.com/articles/46938.

    CAS  Google Scholar 

  58. Rahmani, W., Abbasi, S., Hagner, A., Raharjo, E., Kumar, R., Hotta, A., et al. (2014). Hair Follicle Dermal Stem Cells Regenerate the Dermal Sheath, Repopulate the Dermal Papilla, and Modulate Hair Type. Developmental Cell. Elsevier Inc [Internet], 31(5), 543–558. https://doi.org/10.1016/j.devcel.2014.10.022.

    Article  CAS  Google Scholar 

  59. Harries, M. J., Jimenez, F., Izeta, A., Hardman, J., Panicker, S. P., Poblet, E., et al. (2018). Lichen Planopilaris and Frontal Fibrosing Alopecia as Model Epithelial Stem Cell Diseases. Trends in Molecular Medicine. Elsevier Ltd [Internet], 24(5), 435–448. https://doi.org/10.1016/j.molmed.2018.03.007 Lichen Planopilaris and Frontal Fibrosing Alopecia as Model Epithelial Stem Cell Diseases.

    Article  Google Scholar 

  60. Harries, M. J., Meyer, K. C., Chaudhry, I. H., Griffiths, C. E. M., & Paus, R. (2010). Does collapse of immune privilege in the hair-follicle bulge play a role in the pathogenesis of primary cicatricial alopecia? Clinical and Experimental Dermatology [Internet], 35(6), 637–644. https://doi.org/10.1111/j.1365-2230.2009.03692.x Does collapse of immune privilege in the hair-follicle bulge play a role in the pathogenesis of primary cicatricial alopecia?

    Article  CAS  Google Scholar 

  61. Rodríguez-Bayona, B., Ruchaud, S., Rodríguez, C., Linares, M., Astola, A., Ortiz, M., et al. (2007). Autoantibodies against the chromosomal passenger protein INCENP found in a patient with Graham Little-Piccardi-Lassueur syndrome. Journal of Autoimmune Diseases [Internet], 4(1), 1 http://jautoimdis.biomedcentral.com/articles/10.1186/1740-2557-4-1.

    Google Scholar 

  62. Panicker, S. P., Ganguly, T., Consolo, M., Price, V., Mirmirani, P., Honda, K., et al. (2012). Sterol Intermediates of Cholesterol Biosynthesis Inhibit Hair Growth and Trigger an Innate Immune Response in Cicatricial Alopecia. Fillatreau S, editor. PLoS One [Internet], 7(6), e38449. https://doi.org/10.1371/journal.pone.0038449 Sterol Intermediates of Cholesterol Biosynthesis Inhibit Hair Growth and Trigger an Innate Immune Response in Cicatricial Alopecia.

    Article  CAS  Google Scholar 

  63. Yan, L., Cao, R., Wang, L., Liu, Y., Pan, B., Yin, Y., et al. (2015). Epithelial-mesenchymal transition in keloid tissues and TGF-β1-induced hair follicle outer root sheath keratinocytes. Wound Repair and Regeneration [Internet], 23(4), 601–610. https://doi.org/10.1111/wrr.12320 Epithelial-mesenchymal transition in keloid tissues and TGF-β1-induced hair follicle outer root sheath keratinocytes.

    Article  Google Scholar 

  64. Doche, I., Hordinsky, M., Wilcox, G. L., Valente, N. S., & Romiti, R. (2015). Substance P in keratosis follicularis spinulosa decalvans. JAAD Case Reports. Elsevier Inc [Internet], 1(6), 327–328. https://doi.org/10.1016/j.jdcr.2015.08.001.

    Article  Google Scholar 

  65. Fong, K., Wedgeworth, E. K., Lai-Cheong, J. E., Tosi, I., Mellerio, J. E., Powell, A. M., et al. (2012). MBTPS2 mutation in a British pedigree with keratosis follicularis spinulosa decalvans. Clinical and Experimental Dermatology [Internet], 37(6), 631–634. https://doi.org/10.1111/j.1365-2230.2011.04288.x MBTPS2 mutation in a British pedigree with keratosis follicularis spinulosa decalvans.

    Article  CAS  Google Scholar 

  66. Dlova, N., Goh, C.-L., & Tosti, A. (2013). Familial frontal fibrosing alopecia. The British Journal of Dermatology [Internet], 168(1), 220–222. https://doi.org/10.1111/j.1365-2133.2012.11101.x Familial frontal fibrosing alopecia.

    Article  CAS  Google Scholar 

  67. Badaoui, A., Reygagne, P., Cavelier-Balloy, B., Pinquier, L., Deschamps, L., Crickx, B., et al. (2016). Dissecting cellulitis of the scalp: a retrospective study of 51 patients and review of literature. The British Journal of Dermatology [Internet], 174(2), 421–423 http://www.ncbi.nlm.nih.gov/pubmed/26134994.

    CAS  Google Scholar 

  68. Tziotzios, C., Petridis, C., Dand, N., Ainali, C., Saklatvala, J. R., Pullabhatla, V., et al. (2019). Genome-wide association study in frontal fibrosing alopecia identifies four susceptibility loci including HLA-B*07:02. Nature Communications [Internet], 10(1), 1150 http://www.nature.com/articles/s41467-019-09117-w.

    Google Scholar 

  69. Malki, L., Sarig, O., Romano, M.-T., Méchin, M.-C., Peled, A., Pavlovsky, M., Warshauer, E., Samuelov, L., Uwakwe, L., Briskin, V., Mohamad, J., Gat, A., Isakov, O., Rabinowitz, T., Shomron, N., Adir, N., Simon, M., McMichael, A., Dlova, N. C., & Betz, R. C. (2019). Sprecher E Variant PADI3 in Central Centrifugal Cicatricial Alopecia. The New England Journal of Medicine [Internet], 380(9), 833–841 http://www.nejm.org/doi/10.1056/NEJMoa1816614.

    CAS  Google Scholar 

  70. Porriño-Bustamante, M. L., López-Nevot, M. Á., Aneiros-Fernández, J., Casado-Ruiz, J., García-Linares, S., Pedrinacci-Rodríguez, S., et al. (2019). Study of Human Leukocyte Antigen (HLA) in 13 cases of familial frontal fibrosing alopecia: CYP21A2 gene p.V281L mutation from congenital adrenal hyperplasia linked to HLA class I haplotype HLA-A*33:01; B*14:02; C*08:02 as a genetic marker. The Australasian Journal of Dermatology [Internet], 60(3), e195–e200. https://doi.org/10.1111/ajd.12985 Study of Human Leukocyte Antigen (HLA) in 13 cases of familial frontal fibrosing alopecia:CYP21A2gene p.V281L mutation from congenital adrenal hyperplasia linked toHLAclass I haplotypeHLA‐A*33:01;B*14:02; C*08:02as a genetic marker.

    Article  Google Scholar 

  71. Beach, R. A., Wilkinson, K. A., Gumedze, F., & Khumalo, N. P. (2012). Baseline sebum IL-1α is higher than expected in afro-textured hair: a risk factor for hair loss? Journal of Cosmetic Dermatology [Internet], 11(1), 9–16 http://www.ncbi.nlm.nih.gov/pubmed/22360329.

    Google Scholar 

  72. Karnik, P., Tekeste, Z., McCormick, T. S., Gilliam, A. C., Price, V. H., Cooper, K. D., et al. (2009). Hair Follicle Stem Cell-Specific PPARγ Deletion Causes Scarring Alopecia. Journal of Investigative Dermatology. Elsevier Masson SAS [Internet], 129(5), 1243–1257. https://doi.org/10.1038/jid.2008.369.

    Article  CAS  Google Scholar 

  73. Dina Y, Borhan W, Erdag G, Okoye GA, Sharma R, Perng P, et al. (2018) Preservation of Sebaceous Glands and PPARγ Expression in Central Centrifugal Cicatricial Alopecia. Journal of the American Academy of Dermatology [Internet]. American Academy of Dermatology, Inc.; https://linkinghub.elsevier.com/retrieve/pii/S019096221832320X

  74. Bomar, L., & McMichael, A. (2017). Frontal fibrosing alopecia. The British Journal of Dermatology [Internet], 177(3), e58–e59 http://linkinghub.elsevier.com/retrieve/pii/S1578219017300598.

    CAS  Google Scholar 

  75. Khumalo, N. P., Gantsho, N., Gumedze, F., & Mthebe, T. (2013). Health risks of the clean-shave chiskop haircut. South African Medical Journal [Internet], 103(7), 489–490 http://www.ncbi.nlm.nih.gov/pubmed/23802217.

    CAS  Google Scholar 

  76. Cogen, A. L., Parekh, V., Gangadhar, T., & Lipoff, J. B. (2018). Lichen planopilaris associated with pembrolizumab in a patient with metastatic melanoma. JAAD Case Reports. Elsevier Inc [Internet], 4(2), 132–134. https://doi.org/10.1016/j.jdcr.2017.12.002.

    Article  Google Scholar 

  77. Paus, R., Nickoloff, B. J., & Ito, T. (2005). A “hairy” privilege. Trends in Immunology [Internet], 26(1), 32–40 http://linkinghub.elsevier.com/retrieve/pii/S1471490604002947.

    CAS  Google Scholar 

  78. Rosenblum, M. D., Olasz, E. B., Yancey, K. B., Woodliff, J. E., Lazarova, Z., Gerber, K. A., et al. (2004). Expression of CD200 on Epithelial Cells of the Murine Hair Follicle: A Role in Tissue-Specific Immune Tolerance? Journal of Investigative Dermatology. Elsevier Masson SAS [Internet], 123(5), 880–887. https://doi.org/10.1111/j.0022-202X.2004.23461.x.

    Article  CAS  Google Scholar 

  79. Meyer, K. C., Klatte, J. E., Dinh, H. V., Harries, M. J., Reithmayer, K., Meyer, W., Sinclair, R., & Paus, R. (2008). Evidence that the bulge region is a site of relative immune privilege in human hair follicles. The British Journal of Dermatology, 159(5), 1077–1085.

    PubMed  CAS  Google Scholar 

  80. Gratz, I. K., Truong, H.-A., Yang, S. H.-Y., Maurano, M. M., Lee, K., Abbas, A. K., et al. (2013). Cutting Edge: Memory Regulatory T Cells Require IL-7 and Not IL-2 for Their Maintenance in Peripheral Tissues. Journal of Immunology [Internet], 190(9), 4483–4487. https://doi.org/10.4049/jimmunol.1300212 Cutting Edge: Memory Regulatory T Cells Require IL-7 and Not IL-2 for Their Maintenance in Peripheral Tissues.

    Article  CAS  Google Scholar 

  81. Clark, R. A., Chong, B., Mirchandani, N., Brinster, N. K., Yamanaka, K.-I., Dowgiert, R. K., et al. (2006). The Vast Majority of CLA+ T Cells Are Resident in Normal Skin. Journal of Immunology [Internet], 176(7), 4431–4439. https://doi.org/10.4049/jimmunol.176.7.4431 The Vast Majority of CLA+T Cells Are Resident in Normal Skin.

    Article  CAS  Google Scholar 

  82. Sakaguchi, S. (2005). Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nature Immunology [Internet], 6(4), 345–352 http://www.ncbi.nlm.nih.gov/pubmed/15785760.

    CAS  Google Scholar 

  83. Ali, N., Zirak, B., Rodriguez, R. S., Pauli, M. L., Truong, H.-A., Lai, K., et al. (2017). Regulatory T Cells in skin facilitate Epithelial stem Cell differentiation. Cell. Elsevier Inc [Internet], 169(6), 1119–1129.e11. https://doi.org/10.1016/j.cell.2017.05.002.

    Article  CAS  Google Scholar 

  84. Wynn, T. A., & Ramalingam, T. R. (2012). Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nature Medicine. Nature Publishing Group [Internet], 18(7), 1028–1040. https://doi.org/10.1038/nm.2807.

    Article  CAS  Google Scholar 

  85. Mobini, N., Tam, S., & Kamino, H. (2005). Possible role of the bulge region in the pathogenesis of inflammatory scarring alopecia: lichen planopilaris as the prototype. Journal of Cutaneous Pathology [Internet], 32(10), 675–679. https://doi.org/10.1111/j.0303-6987.2005.00399.x Possible role of the bulge region in the pathogenesis of inflammatory scarring alopecia: lichen planopilaris as the prototype.

    Article  Google Scholar 

  86. Toro, J. R., Finlay, D., Dou, X., Zheng, S. C., LeBoit, P. E., & Connolly, M. K. (2000). Detection of type 1 cytokines in discoid lupus erythematosus. Archives of Dermatology [Internet], 136(12), 1497–1501 http://www.ncbi.nlm.nih.gov/pubmed/11115160.

    CAS  Google Scholar 

  87. Zeisberg, M., & Kalluri, R. (2013). Cellular Mechanisms of Tissue Fibrosis. 1. Common and organ-specific mechanisms associated with tissue fibrosis. American Journal of Physiology - American Physiological [Internet], 304(3), C216–C225. https://doi.org/10.1152/ajpcell.00328.2012 Cellular Mechanisms of Tissue Fibrosis. 1. Common and organ-specific mechanisms associated with tissue fibrosis.

    Article  CAS  Google Scholar 

  88. Imanishi, H., Ansell, D. M., Chéret, J., Harries, M., Bertolini, M., Sepp, N., et al. (2018). Epithelial-to-Mesenchymal Stem Cell Transition in a Human Organ: Lessons from Lichen Planopilaris. Journal of Investigative Dermatology. Society for Investigative Dermatology [Internet], 138(3), 511–519. https://doi.org/10.1016/j.jid.2017.09.047.

    Article  CAS  Google Scholar 

  89. Moretti, S., Amato, L., Massi, D., Bianchi, B., Gallerani, I., & Fabbri, P. (2004). Evaluation of inflammatory infiltrate and fibrogenic cytokines in pseudopelade of Brocq suggests the involvement of T-helper 2 and 3 cytokines. The British Journal of Dermatology [Internet], 151(1), 84–90 http://www.ncbi.nlm.nih.gov/pubmed/15270875.

    CAS  Google Scholar 

  90. Lamouille, S., Xu, J., & Derynck, R. (2014). Molecular mechanisms of epithelial–mesenchymal transition. Nature Reviews. Molecular Cell Biology [Internet], 15(3), 178–196 http://www.ncbi.nlm.nih.gov/pubmed/24556840.

    CAS  Google Scholar 

  91. Oshimori, N., & Fuchs, E. (2012). Paracrine TGF-β Signaling Counterbalances BMP-Mediated Repression in Hair Follicle Stem Cell Activation. Cell Stem Cell. Elsevier Inc [Internet], 10(1), 63–75. https://doi.org/10.1016/j.stem.2011.11.005.

    Article  CAS  Google Scholar 

  92. Greco, V., Chen, T., Rendl, M., Schober, M., Pasolli, H. A., Stokes, N., et al. (2009). A Two-Step Mechanism for Stem Cell Activation during Hair Regeneration. Cell Stem Cell. Elsevier Inc [Internet], 4(2), 155–169. https://doi.org/10.1016/j.stem.2008.12.009.

    Article  CAS  Google Scholar 

  93. Meng, X., Nikolic-Paterson, D. J., & Lan, H. Y. (2016). TGF-β: the master regulator of fibrosis. Nature Reviews Nephrology. Nature Publishing Group [Internet], 12(6), 325–338. https://doi.org/10.1038/nrneph.2016.48.

    Article  CAS  Google Scholar 

  94. Singh, M., Yelle, N., Venugopal, C., & Singh, S. K. (2018). EMT: Mechanisms and therapeutic implications. Pharmacology & Therapeutics. Elsevier Inc [Internet], 182, 80–94. https://doi.org/10.1016/j.pharmthera.2017.08.009.

    Article  CAS  Google Scholar 

  95. Liu, L. Y., & King, B. A. (2018). Tofacitinib for the Treatment of Severe Alopecia Areata in Adults and Adolescents. Journal of Investigative Dermatology Symposium Proceedings. The Authors [Internet], 19(1), S18–S20. https://doi.org/10.1016/j.jisp.2017.10.003.

    Article  Google Scholar 

  96. Ito, T., Ito, N., Bettermann, A., Tokura, Y., Takigawa, M., & Paus, R. (2004). Collapse and restoration of MHC class-I-dependent immune privilege. The American Journal of Pathology [Internet], 164(2), 623–634 http://linkinghub.elsevier.com/retrieve/pii/S0002944010631513.

    CAS  Google Scholar 

  97. Assouly, P., & Reygagne, P. (2009). lichen Planopilaris: Update on Diagnosis and Treatment. Seminars in Cutaneous Medicine and Surgery. Elsevier Inc [Internet], 28(1), 3–10. https://doi.org/10.1016/j.sder.2008.12.006 Lichen Planopilaris: Update on Diagnosis and Treatment.

    Article  CAS  Google Scholar 

  98. Bastida, J., Valerón-Almazán, P., Santana-Molina, N., Medina-Gil, C., & Carretero-Hernández, G. (2012). Treatment of folliculitis decalvans with tacrolimus ointment. International Journal of Dermatology [Internet], 51(2), 216–220. https://doi.org/10.1111/j.1365-4632.2011.05212.x Treatment of folliculitis decalvans with tacrolimus ointment.

    Article  CAS  Google Scholar 

  99. Harries, M. J., Sinclair, R. D., MacDonald-Hull, S., Whiting, D. A., Griffiths, C. E. M., & Paus, R. (2008). Management of primary cicatricial alopecias: options for treatment. The British Journal of Dermatology [Internet], 159(1), 1–22 http://www.ncbi.nlm.nih.gov/pubmed/18489608.

    CAS  Google Scholar 

  100. Bennett, J., Cassidy, H., Slattery, C., Ryan, M. P., & McMorrow, T. (2016). Tacrolimus Modulates TGF-β Signaling to Induce Epithelial-Mesenchymal Transition in Human Renal Proximal Tubule Epithelial Cells. Journal of Clinical Medicine [Internet], 5(5), 50 http://www.mdpi.com/2077-0383/5/5/50.

    Google Scholar 

  101. Mirmirani, P. (2009). lichen Planopilaris Treated With a Peroxisome Proliferator–Activated Receptor γ Agonist. Archives of Dermatology [Internet], 145(12), –1363 http://archderm.jamanetwork.com/article.aspx?doi=10.1001/archdermatol.2009.283.

  102. Mesinkovska, N. A., Tellez, A., Dawes, D., Piliang, M., & Bergfeld, W. (2015). The use of oral pioglitazone in the treatment of lichen planopilaris. Journal of the American Academy of Dermatology. American Academy of Dermatology, Inc [Internet], 72(2), 355–356. https://doi.org/10.1016/j.jaad.2014.10.036.

    Article  Google Scholar 

  103. Spring, P., Spanou, Z., & de Viragh, P. A. (2013). Lichen planopilaris treated by the peroxisome proliferator activated receptor-γ agonist pioglitazone: Lack of lasting improvement or cure in the majority of patients. Journal of the American Academy of Dermatology [Internet], 69(5), 830–832 https://linkinghub.elsevier.com/retrieve/pii/S0190962213006567.

    Google Scholar 

  104. Baibergenova, A., & Walsh, S. (2012). Use of pioglitazone in patients with lichen planopilaris. Journal of Cutaneous Medicine and Surgery [Internet], 16(2), 97–100 http://www.ncbi.nlm.nih.gov/pubmed/22513061.

    CAS  Google Scholar 

  105. Makled MN, Sharawy MH, El-Awady MS (2019) The dual PPAR-α/γ agonist saroglitazar ameliorates thioacetamide-induced liver fibrosis in rats through regulating leptin. Naunyn Schmiedebergs Archives of Pharmacology [Internet]. Naunyn-Schmiedeberg’s Archives of Pharmacology http://www.ncbi.nlm.nih.gov/pubmed/31367862.

  106. Burgess, H. A., Daugherty, L. E., Thatcher, T. H., Lakatos, H. F., Ray, D. M., Redonnet, M., Phipps, R. P., & Sime, P. J. (2005). PPARγ agonists inhibit TGF-β induced pulmonary myofibroblast differentiation and collagen production: implications for therapy of lung fibrosis. American Journal of Physiology-Cell Physiology [Internet], 288(6), L1146–L1153 http://ajplung.physiology.org/cgi/content/abstract/288/6/L1146.

    CAS  Google Scholar 

  107. McElwee, K. J., Kissling, S., Wenzel, E., Huth, A., & Hoffmann, R. (2003). Cultured peribulbar dermal sheath cells can induce hair follicle development and contribute to the dermal sheath and dermal papilla. The Journal of Investigative Dermatology [Internet], 121(6), 1267–1275 http://www.ncbi.nlm.nih.gov/pubmed/14675169.

    CAS  Google Scholar 

Download references

Funding

NK and HAA are funded by the National Research Foundation (SARChI Chair) and the South African Medical Research Council (Mid-career Scientist and Self-Initiated Research grant).

Author information

Authors and Affiliations

Authors

Contributions

RPH-S: Design and planning, literature search, writing, figure design and construction. HAA: Literature search, writing. NPK: Design and planning, literature search, writing.

Corresponding author

Correspondence to Richard P. Halley-Stott.

Ethics declarations

Conflict of Interests

RPH-S, HAA and NPK have no conflict(s) of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halley-Stott, R.P., Adeola, H.A. & Khumalo, N.P. Destruction of the stem cell Niche, Pathogenesis and Promising Treatment Targets for Primary Scarring Alopecias. Stem Cell Rev and Rep 16, 1105–1120 (2020). https://doi.org/10.1007/s12015-020-09985-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-020-09985-6

Keywords

Navigation