Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Streptomyces marianii sp. nov., a novel marine actinomycete from southern coast of India

Abstract

A novel marine actinomycete strain designated ICN19T was isolated from the subtidal sediment of Chinnamuttam coast of Kanyakumari, India and subjected to polyphasic taxonomic analysis. Neighbour-joining tree based on 16S rRNA gene sequences of validly described type strains had revealed the strain ICN19T formed distinct cluster with Streptomyces wuyuanensis CGMCC 4.7042T, Streptomyces tirandamycinicus HNM0039T and Streptomyces spongiicola HNM0071T. Morphological, physiological and chemotaxonomic characteristics were consistent with those of members of the genus Streptomyces. The strain possessed ll-diaminopimelic acid as the diagnostic diamino acid. The predominant isoprenoid quinone was identified as MK-9(H8) (70%), MK-9(H6) (20%) and MK-9(H2) (2%), with the major cellular fatty acids (>10%) being anteiso-C15:0, C16:0 and iso-C16:0. The main polar lipids were found to be diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol mannosides and three unidentified phospholipids. The dendrogram generated on the basis of MALDI-TOF mass spectra supports the strain differentiated from its neigbours. The genome sequence of strain ICN19T was 9,010,366 bp in size with a total of 7420 protein-coding genes and 98 RNA genes. The genomic G+C content of the novel strain was 71.27 mol%. The DNA–DNA relatedness between strain ICN19T and the reference strains with S. wuyuanensis CGMCC 4.7042T, S. tirandamycinicus HNM0039T and S. spongiicola HNM0071T were 42.8%, 39.5% and 38%, respectively. Based on differences in physiological, biochemical, chemotaxonomic differences and whole-genome characteristics the isolated strain represents a novel species of the genus Streptomyces, for which the name Streptomyces marianii sp. nov. is proposed. Type strain is ICN19T (=MCC 3599T = KCTC 39749T).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Walsh CT, Wencewicz TA. Prospects for new antibiotics: a molecule-centered perspective. J Antibiot. 2014;67:7–22. https://doi.org/10.1038/ja.2013.49.

    Article  CAS  Google Scholar 

  2. Hassan SS, Anjum K, Abbas SQ, Akhter N, Shagufta BI, Shah SA, Tasneem U. Emerging biopharmaceuticals from marine actinobacteria. Environ Toxicol Pharmacol. 2016;49:34–47. https://doi.org/10.1016/j.etap.2016.11.015.

    Article  CAS  PubMed  Google Scholar 

  3. Chen C, Ye Y, Wang R, Zhang Y, Wu C, Debnathm SC, Ma Z, Wang J, Wu M. Streptomyces nigra sp. nov. is a novel actinobacterium isolated from mangrove soil and exerts a potent antitumor activity in vitro. Front Microbiol. 2018;9:1587. https://doi.org/10.3389/fmicb.2018.01587.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Veyisoglu A, Sahin N. Streptomyces klenkii sp. nov., isolated from deep marine sediment. Antonie Van Leeuwenhoek. 2015;107:273–9. https://doi.org/10.1007/s10482-014-0325-y.

    Article  CAS  PubMed  Google Scholar 

  5. Veyisoglu A, Cetin D, Inan Bektas K, Guven K, Sahin N. Streptomyces ovatisporus sp. nov., isolated from deep marine sediment. Int J Syst Evol Microbiol. 2016;66:4856–63. https://doi.org/10.1099/ijsem.0.001442.

    Article  CAS  PubMed  Google Scholar 

  6. Silva FS, Souza DT, Zucchi TD, Pansa CC, de Figueiredo Vasconcellos RL, Crevelin EJ, de Moraes LA, Melo IS. Streptomyces atlanticus sp. nov., a novel actinomycete isolated from marine sponge Aplysina fulva (Pallas, 1766). Antonie Van Leeuwenhoek. 2016;109:1467–74. https://doi.org/10.1007/s10482-016-0748-8.

    Article  PubMed  Google Scholar 

  7. Phongsopitanun W, Kudo T, Ohkuma M, Pittayakhajonwut P, Suwanborirux K, Tanasupawat S. Streptomyces verrucosisporus sp. nov., isolated from marine sediments. Int J Syst Evol Microbiol. 2016;66:3607–13. https://doi.org/10.1099/ijsem.0.001240.

    Article  CAS  PubMed  Google Scholar 

  8. Huang X, Zhou S, Huang D, Chen J, Zhu W. Streptomyces spongiicola sp. nov. a novel marine sponge-derived actinomycete. Int J Syst Evol Microbiol. 2016;66:738–43. https://doi.org/10.1099/ijsem.0.000782.

    Article  CAS  PubMed  Google Scholar 

  9. Huang X, Kong F, Zhou S, Huang D, Zheng J, Zhu W. Streptomyces tirandamycinicus sp. nov., a novel marine sponge-derived actinobacterium with antibacterial potential against Streptococcus agalactiae. Front Microbiol. 2019;10:482. https://doi.org/10.3389/fmicb.2019.00482.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Iniyan AM, Sudarman E, Wink J, Kannan RR, Vincent SGP. Ala-geninthiocin, a new broad spectrum thiopeptide antibiotic, produced by a marine Streptomyces sp. ICN19. J Antibiot. 2019;72:99–105. https://doi.org/10.1038/s41429-018-0115-2.

    Article  CAS  Google Scholar 

  11. Tindall BJ, Rossello-Mora R, Busse HJ, Ludwig W, Kampfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol. 2010;60:249–66. https://doi.org/10.1099/ijs.0.016949-0.

    Article  CAS  PubMed  Google Scholar 

  12. Gause GF, Preobrazhenskaya TP, Sveshnikova GV, Terekhova LP, Maksimova TS. A guide for determination of actinomycetes. Moscow: Nauka; 1983.

    Google Scholar 

  13. Jensen PR, Dwight R, Fenical W. Distribution of actinomycetes in near-shore tropical marine sediments. Appl Environ Microbiol. 1991;57:1102–8. http://aem.asm.org/content/57/4/1102.abstract.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kates M. Techniques of lipidology: isolation, analysis and identification of lipids. Amsterdam; 1972. https://trove.nla.gov.au/work/18775582.

  15. Iniyan AM, Kannan RR, Vincent SGP. Characterization of culturable actinomycetes associated with halophytic rhizosphere as potential source of antibiotics. Proc Natl Acad Sci India Sect B Biol Sci. 2017;87:233–42. https://doi.org/10.1007/s40011-015-0601-2.

    Article  CAS  Google Scholar 

  16. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol. 2012;62:716–21. https://doi.org/10.1099/ijs.0.038075-0.

    Article  CAS  PubMed  Google Scholar 

  17. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547–9. https://doi.org/10.1093/molbev/msy096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–25. https://doi.org/10.1093/oxfordjournals.molbev.a040454.

    Article  CAS  PubMed  Google Scholar 

  19. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39:783–79. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x.

    Article  PubMed  Google Scholar 

  20. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981;17:368–76. https://doi.org/10.1007/BF01734359.

    Article  CAS  PubMed  Google Scholar 

  21. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol. 1966;16:313–40. https://doi.org/10.1099/00207713-16-3-313.

    Article  Google Scholar 

  22. Gordon RE, Barnett DA, Handerhan JE, Pang CHN. Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol. 1974;24:54–63. https://doi.org/10.1099/00207713-24-1-54.

    Article  Google Scholar 

  23. Williams ST, Goodfellow M, Alderson G, Wellington EMH, Sneath PHA, Sackin MJ. Numerical classification of Streptomyces and related genera. J Gen Microbiol. 1983;129:1743–813. https://doi.org/10.1099/00221287-129-6-1743.

    Article  CAS  PubMed  Google Scholar 

  24. Cappuccino JG, Sherman N. Microbiology: a Laboratory Manual. 5th ed. California: Benjamin/Cummings Science Publishing; 1998. https://www.pearson.com/us/higher-education/product/Cappuccino-Microbiology-A-Laboratory-Manual-5th-Edition/9780805376463.html.

  25. Sasser M Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.; 1990. https://store.pda.org/tableofcontents/ermm_v3_ch01.pdf.

  26. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol. 1983;29:319–22. https://doi.org/10.2323/jgam.29.319.

    Article  CAS  Google Scholar 

  27. Lechevalier MP, Lechevalier HA. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol. 1970;20:435–43. https://jb.asm.org/content/94/4/875.long.

    Article  CAS  Google Scholar 

  28. Collins MD, Howarth OW, Grund E, Kroppenstedt RM. Isolation and structural determination of new members of the vitamin K2 series in Nocardia brasiliensis. FEMS Microbiol Lett. 1987;41:35–39. https://doi.org/10.1111/j.1574-6968.1987.tb02137.x.

    Article  CAS  Google Scholar 

  29. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol. 1979;47:87–95. https://doi.org/10.1111/j.1365-2672.1979.tb01172.x.

    Article  CAS  Google Scholar 

  30. Kates M Techniques of lipidology: isolation, analysis, and identification of lipids. 2nd revised ed. Amsterdam, NY: Elsevier; 1986. https://trove.nla.gov.au/version/45631901.

  31. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett. 1990;66:199–202. https://doi.org/10.1016/0378-1097(90)90282-U.

    Article  CAS  Google Scholar 

  32. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol. 1990;13:128–30. https://doi.org/10.1016/S0723-2020(11)80158-X.

    Article  CAS  Google Scholar 

  33. Oren A, Duker S, Ritter S. The polar lipid composition of Walsby’s square bacterium. FEMS Microbiol Lett. 1996;138:135–40. https://doi.org/10.1111/j.1574-6968.1996.tb08146.x.

    Article  CAS  Google Scholar 

  34. Rzhetsky A, Nei M. Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol. 1993;10:1073–95. https://doi.org/10.1093/oxfordjournals.molbev.a040056.

    Article  CAS  PubMed  Google Scholar 

  35. Baym M, Kryazhimskiy S, Lieberman TD, Chung H, Desai MM, Kishony R. Inexpensive multiplexed library preparation for megabase-sized genomes. PLoS ONE. 2015;10:e0128036. https://doi.org/10.1371/journal.pone.0128036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li H, Durbin R. Fast and accurate short read alignment with Burros-Wheeler transform. Bioinformatics. 2009;25:1754–60. https://doi.org/10.1093/bioinformatics/btp324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, Miller CA, Mardis ER, Ding L, Wilson RK. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 2012;22:568–76. https://doi.org/10.1101/gr.129684.111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinforma. 2013;14:60. https://doi.org/10.1186/1471-2105-14-60.

    Article  Google Scholar 

  39. Meier-Kolthoff JP, Klenk HP, Göker M. Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age. Int J Syst Evol Microbiol. 2014;64(Pt 2):352–6. https://doi.org/10.1099/ijs.0.056994-0.

    Article  CAS  PubMed  Google Scholar 

  40. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, Medema MH, Weber T antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 2019 pii: gkz310. https://doi.org/10.1093/nar/gkz310.

  41. Yoon S-H, Ha S, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek. 2017;110:1281–6. https://doi.org/10.1007/s10482-017-0844-4.

    Article  CAS  PubMed  Google Scholar 

  42. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16:111–20.

    Article  CAS  PubMed  Google Scholar 

  43. Klappenbach JA, Goris J, Vandamme P, Coenye T, Konstantinidis KT, Tiedje JM. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol. 2007;57(Pt 1):81–91. https://doi.org/10.1099/ijs.0.64483-0.

    Article  CAS  PubMed  Google Scholar 

  44. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol. 2014;64(Pt 2):346–51. http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.059774-0.

    Article  CAS  PubMed  Google Scholar 

  45. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA. 2009;106:19126–31. https://doi.org/10.1073/pnas.0906412106.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Rong X, Huang Y. Taxonomic evaluation of the Streptomyces hygroscopicus clade using multilocus sequence analysis and DNA-DNA hybridization, validating the MLSA scheme for systematics of the whole genus. Syst Appl Microbiol. 2012;35:7–18. https://doi.org/10.1016/j.syapm.2011.10.004.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The support of the Department of Science and Technology, Science and Engineering Research Board, Govt. of India [F.No. SR/SO/HS-104/2012] to SGPV is gratefully acknowledged. We thank Prof. Peter Kampfer, University of Gießen, Germany for his help on SEM analysis. We thank to Prof. Aharon Oren, The Hebrew University of Jerusalem, Israel for his expert suggestion for correct species epithet and Latin etymology. We thank Romy Schade, Simone Severitt and Carola Berg for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Appadurai Muthamil Iniyan, Chintalapati Venkata Ramana or Samuel Gnana Prakash Vincent.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iniyan, A.M., Wink, J., Landwehr, W. et al. Streptomyces marianii sp. nov., a novel marine actinomycete from southern coast of India. J Antibiot 74, 59–69 (2021). https://doi.org/10.1038/s41429-020-0360-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-020-0360-z

This article is cited by

Search

Quick links