Skip to main content

Advertisement

Log in

Neurodegenerative Diseases and Cell Reprogramming

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Neurodegenerative diseases have different types according to the onset of the disease, the time course, and the underlying pathology. Although the dogma that brain cells cannot regenerate has changed, the normal regenerative process of the brain is usually not sufficient to restore brain tissue defects after different pathological insults. Stem cell therapy and more recently cell reprogramming could achieve success in the process of brain renewal. This review article presents recent advances of stem cell therapies in neurodegenerative diseases and the role of cell reprogramming in the scope of optimizing a confined condition that could direct signaling pathways of the cell toward a specific neural lineage. Further, we will discuss different types of transcriptional factors and their role in neural cell fate direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of Data and Material

Not applicable.

Abbreviations

AD:

Alzheimer’s disease

ALS:

Amyotrophic lateral sclerosis

ASC:

Adult stem cell

DCX:

Doublecortin

DLX2:

Distal-less homeobox 2

ESC:

Embryonic stem cell

FSC:

Fetal stem cell

GAP-43:

Growth associated proteins-43

HD:

Huntington’s disease

hBM- MSC:

Human bone marrow mesenchymal stem cell

hU-MSC:

Human umbilical mesenchymal stem cell

iPSC:

Induced pluripotent stem cell

IL:

Interleukin

MSC:

Mesenchymal stem cell

MS:

Multiple sclerosis

NSC:

Neural stem cell

NPC :

Neural progenitor cell/neural precursor cell

NTF :

Neurotropic factor

PAX:

Paired box protein

PD:

Parkinson’s disease

SOX:

SRY-related HMG-box

SGZ:

Subgranular zone

SVZ:

Subventricular zone

TGF-β:

Transforming growth factor-β

TF:

Transcriptional factors

VEGF:

Vascular endothelial growth factor

References

  1. Ishii K, Katayama M, Hori K, Yodoi J, Nakanishi T (1993) Effects of 2-mercaptoethanol on survival and differentiation of fetal mouse brain neurons cultured in vitro. Neurosci Lett 163:159–162. https://doi.org/10.1016/0304-3940(93)90371-Q

    Article  CAS  PubMed  Google Scholar 

  2. Borlongan CV, Burns J, Tajiri N, Stahl CE, Weinbren NL, Shojo H, Sanberg PR, Emerich DF et al (2013) Epidemiological survey-based formulae to approximate incidence and prevalence of neurological disorders in the United States: a meta-analysis. PLoS One 8:e78490. https://doi.org/10.1371/journal.pone.0078490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Heemels M-T (2016) Neurodegenerative diseases. Nature 539:179–180. https://doi.org/10.1038/539179a

    Article  PubMed  Google Scholar 

  4. Feigin VL, Abajobir AA, Abate KH, Abd-Allah F, Abdulle AM, Abera SF, Abyu GY, Ahmed MB et al (2017) Global, regional, and national burden of neurological disorders during 1990–2015: a systematic analysis for the global burden of disease study 2015. Lancet Neurol 16:877–897

    Google Scholar 

  5. Abeliovich A, Gitler AD (2016) Defects in trafficking bridge Parkinson's disease pathology and genetics. Nature 539:207–216. https://doi.org/10.1038/nature20414

    Article  PubMed  Google Scholar 

  6. Canter RG, Penney J, Tsai L-H (2016) The road to restoring neural circuits for the treatment of Alzheimer's disease. Nature 539:187–196. https://doi.org/10.1038/nature20412

    Article  PubMed  Google Scholar 

  7. Russo I, Barlati S, Bosetti F (2011) Effects of neuroinflammation on the regenerative capacity of brain stem cells. J Neurochem 116:947–956. https://doi.org/10.1111/j.1471-4159.2010.07168.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kempuraj D, Thangavel R, Natteru PA, Selvakumar GP, Saeed D, Zahoor H et al (2016) Neuroinflammation induces neurodegeneration. J Neurol Neurosurg Spine 1:1003

    PubMed  PubMed Central  Google Scholar 

  9. Willis CL, Nolan CC, Reith SN, Lister T, Prior MJW, Guerin CJ, Mavroudis G, Ray DE (2004) Focal astrocyte loss is followed by microvascular damage, with subsequent repair of the blood-brain barrier in the apparent absence of direct astrocytic contact. Glia 45:325–337. https://doi.org/10.1002/glia.10333

    Article  PubMed  Google Scholar 

  10. Gurney KJ, Estrada EY, Rosenberg GA (2006) Blood–brain barrier disruption by stromelysin-1 facilitates neutrophil infiltration in neuroinflammation. Neurobiol Dis 23:87–96. https://doi.org/10.1016/j.nbd.2006.02.006

    Article  CAS  PubMed  Google Scholar 

  11. Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381. https://doi.org/10.1146/annurev.ne.09.030186.002041

    Article  CAS  PubMed  Google Scholar 

  12. DeMaagd G, Philip A (2015) Parkinson's disease and its management: part 1: disease entity, risk factors, pathophysiology, clinical presentation, and diagnosis. P&T 40:504–532

    Google Scholar 

  13. Rizek P, Kumar N, Jog MS (2016) An update on the diagnosis and treatment of Parkinson disease. CMAJ 188:1157–1165. https://doi.org/10.1503/cmaj.151179

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rocca WA (2018) The burden of Parkinson's disease: a worldwide perspective. Lancet Neurol 17:928–929. https://doi.org/10.1016/S1474-4422(18)30355-7

    Article  PubMed  Google Scholar 

  15. Driver JA, Logroscino G, Gaziano JM, Kurth T (2009) Incidence and remaining lifetime risk of Parkinson disease in advanced age. Neurology 72:432–438. https://doi.org/10.1212/01.wnl.0000341769.50075.bb

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wright P, Zvartau-Hind M (2012) Organic psychiatry and epilepsy. In: Wright P, Stern J, Phelan M (eds) Core psychiatry (third edition). W.B. Saunders, Oxford, pp. 391–420. https://doi.org/10.1016/B978-0-7020-3397-1.00027-6

    Chapter  Google Scholar 

  17. Kuller LH, Lopez OL (2011) Dementia and Alzheimer's disease: a new direction. Alzheimers Dement 7:540–550. https://doi.org/10.1016/j.jalz.2011.05.901

    Article  PubMed  PubMed Central  Google Scholar 

  18. Calabresi PA (2004) Diagnosis and management of multiple sclerosis. Am Fam Physician 70:1935–1944

    PubMed  Google Scholar 

  19. Neuhaus O, Archelos JJ, Hartung H-P (2003) Immunomodulation in multiple sclerosis: from immunosuppression to neuroprotection. Trends Pharmacol Sci 24:131–138. https://doi.org/10.1016/S0165-6147(03)00028-2

    Article  CAS  PubMed  Google Scholar 

  20. Weinshenker BG (1996) Epidemiology of multiple sclerosis. Neurol Clin 14:291–308. https://doi.org/10.1016/s0733-8619(05)70257-7

    Article  CAS  PubMed  Google Scholar 

  21. Goldenberg MM (2012) Multiple sclerosis review. P&T 37:175–184

    Google Scholar 

  22. Singh VK, Mehrotra S, Agarwal SS (1999) The paradigm of Th1 and Th2 cytokines: its relevance to autoimmunity and allergy. Immunol Res 20:147–161. https://doi.org/10.1007/bf02786470

    Article  CAS  PubMed  Google Scholar 

  23. Martin S, Al Khleifat A, Al-Chalabi A (2017) What causes amyotrophic lateral sclerosis? F1000Research 6:371–371. https://doi.org/10.12688/f1000research.10476.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Taylor JP, Brown RH Jr, Cleveland DW (2016) Decoding ALS: from genes to mechanism. Nature 539:197–206. https://doi.org/10.1038/nature20413

    Article  PubMed  PubMed Central  Google Scholar 

  25. Galvin M, Gaffney R, Corr B, Mays I, Hardiman O (2017) From first symptoms to diagnosis of amyotrophic lateral sclerosis: perspectives of an Irish informal caregiver cohort-a thematic analysis. BMJ Open 7:e014985–e014985. https://doi.org/10.1136/bmjopen-2016-014985

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chio A, Logroscino G, Traynor BJ, Collins J, Simeone JC, Goldstein LA et al (2013) Global epidemiology of amyotrophic lateral sclerosis: a systematic review of the published literature. Neuroepidemiology 41:118–130. https://doi.org/10.1159/000351153

    Article  CAS  PubMed  Google Scholar 

  27. Bockel B, Zühlke C, Thies U, Rless O, Lange H (1993) Mitotic stability and meiotic variability of the (CAG)n repeat in the Huntington disease gene. Hum Mol Genet 2:2063–2067. https://doi.org/10.1093/hmg/2.12.2063

    Article  PubMed  Google Scholar 

  28. Nopoulos PC (2016) Huntington disease: a single-gene degenerative disorder of the striatum. Dialogues Clin Neurosci 18:91–98

    PubMed  PubMed Central  Google Scholar 

  29. Bates GP (2005) History of genetic disease: the molecular genetics of Huntington disease - a history. Nat Rev Genet 6:766–773. https://doi.org/10.1038/nrg1686

    Article  CAS  PubMed  Google Scholar 

  30. Lie DC, Song H, Colamarino SA, G-l M, Gage FH (2004) Neurogenesis in the adult brain: new strategies for central nervous system diseases. Annu Rev Pharmacol Toxicol 44:399–421. https://doi.org/10.1146/annurev.pharmtox.44.101802.121631

    Article  CAS  PubMed  Google Scholar 

  31. Quiñones-Hinojosa A, Sanai N, Soriano-Navarro M, Gonzalez-Perez O, Mirzadeh Z, Gil-Perotin S, Romero-Rodriguez R, Berger MS et al (2006) Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells. J Comp Neurol 494:415–434. https://doi.org/10.1002/cne.20798

    Article  PubMed  Google Scholar 

  32. Barkho BZ, Song H, Aimone JB, Smrt RD, Kuwabara T, Nakashima K, Gage FH, Zhao X (2006) Identification of astrocyte-expressed factors that modulate neural stem/progenitor cell differentiation. Stem Cells Dev 15:407–421. https://doi.org/10.1089/scd.2006.15.407

    Article  CAS  PubMed  Google Scholar 

  33. Fumarola C, Bonelli MA, Petronini PG, Alfieri RR (2014) Targeting PI3K/AKT/mTOR pathway in non small cell lung cancer. Biochem Pharmacol 90:197–207. https://doi.org/10.1016/j.bcp.2014.05.011

    Article  CAS  PubMed  Google Scholar 

  34. Huels DJ, Medema JP (2018) Think about the environment: cellular reprogramming by the extracellular matrix. Cell Stem Cell 22:7–9. https://doi.org/10.1016/j.stem.2017.12.006

    Article  CAS  PubMed  Google Scholar 

  35. Martino G, Pluchino S, Bonfanti L, Schwartz M (2011) Brain regeneration in physiology and pathology: the immune signature driving therapeutic plasticity of neural stem cells. Physiol Rev 91:1281–1304. https://doi.org/10.1152/physrev.00032.2010

    Article  CAS  PubMed  Google Scholar 

  36. Stocum D (2012) Tissue restoration through regenerative biology and medicine: Springer Science & Business Media. https://doi.org/10.1007/978-3-642-18928-9

  37. Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8:963–970. https://doi.org/10.1038/nm747

    Article  CAS  PubMed  Google Scholar 

  38. Hess DC, Borlongan C (2008) Stem cells and neurological diseases. Cell Prolif 41:94–114. https://doi.org/10.1111/j.1365-2184.2008.00486.x

    Article  PubMed  Google Scholar 

  39. Sun D (2014) The potential of endogenous neurogenesis for brain repair and regeneration following traumatic brain injury. Neural Regen Res 9:688–692. https://doi.org/10.4103/1673-5374.131567

    Article  PubMed  PubMed Central  Google Scholar 

  40. Han Dong W, Tapia N, Hermann A, Hemmer K, Höing S, Araúzo-Bravo Marcos J et al (2012) Direct reprogramming of fibroblasts into neural stem cells by defined factors. Cell Stem Cell 10:465–472. https://doi.org/10.1016/j.stem.2012.02.021

    Article  CAS  PubMed  Google Scholar 

  41. Xiao N, Le Q-T (2016) Neurotrophic factors and their potential applications in tissue regeneration. Arch Immunol Ther Exp 64:89–99. https://doi.org/10.1007/s00005-015-0376-4

    Article  CAS  Google Scholar 

  42. Munoz JR, Stoutenger BR, Robinson AP, Spees JL, Prockop DJ (2005) Human stem/progenitor cells from bone marrow promote neurogenesis of endogenous neural stem cells in the hippocampus of mice. P Natl Acad Sci USA 102:18171–18176. https://doi.org/10.1073/pnas.0508945102

    Article  CAS  Google Scholar 

  43. Kobayashi T, Ahlenius H, Thored P, Kobayashi R, Kokaia Z, Lindvall O (2006) Intracerebral infusion of glial cell line-derived neurotrophic factor promotes striatal neurogenesis after stroke in adult rats. Stroke 37:2361–2367. https://doi.org/10.1161/01.STR.0000236025.44089.e1

    Article  CAS  PubMed  Google Scholar 

  44. Cova L, Armentero M-T, Zennaro E, Calzarossa C, Bossolasco P, Busca G, Lambertenghi Deliliers G, Polli E et al (2010) Multiple neurogenic and neurorescue effects of human mesenchymal stem cell after transplantation in an experimental model of Parkinson's disease. Brain Res 1311:12–27. https://doi.org/10.1016/j.brainres.2009.11.041

    Article  CAS  PubMed  Google Scholar 

  45. Bao X, Wei J, Feng M, Lu S, Li G, Dou W, Ma W, Ma S et al (2011) Transplantation of human bone marrow-derived mesenchymal stem cells promotes behavioral recovery and endogenous neurogenesis after cerebral ischemia in rats. Brain Res 1367:103–113. https://doi.org/10.1016/j.brainres.2010.10.063

    Article  CAS  PubMed  Google Scholar 

  46. Glavaski-Joksimovic A, Virag T, Mangatu TA, McGrogan M, Wang XS, Bohn MC (2010) Glial cell line-derived neurotrophic factor–secreting genetically modified human bone marrow-derived mesenchymal stem cells promote recovery in a rat model of Parkinson's disease. J Neurosci Res 88:2669–2681. https://doi.org/10.1002/jnr.22435

    Article  CAS  PubMed  Google Scholar 

  47. Krakora D, Mulcrone P, Meyer M, Lewis C, Bernau K, Gowing G, Zimprich C, Aebischer P et al (2013) Synergistic effects of GDNF and VEGF on lifespan and disease progression in a familial ALS rat model. Mol Ther 21:1602–1610. https://doi.org/10.1038/mt.2013.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Frati P, Scopetti M, Santurro A, Gatto V, Fineschi VJSci (2017) Stem cell research and clinical translation: a roadmap about good clinical practice and patient care. Stem Cells Int 2017:5080259. https://doi.org/10.1155/2017/5080259, 5080258

  49. Weissman IL (2000) Stem cells: units of development, units of regeneration, and units in evolution. Cell 100:157–168. https://doi.org/10.1016/s0092-8674(00)81692-x

    Article  CAS  PubMed  Google Scholar 

  50. Menon S, Shailendra S, Renda A, Longaker M, Quarto N (2016) An overview of direct somatic reprogramming: the ins and outs of iPSCs. Int J Mol Sci 17:141. https://doi.org/10.3390/ijms17010141

    Article  CAS  PubMed Central  Google Scholar 

  51. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676. https://doi.org/10.1016/j.cell.2006.07.024

    Article  CAS  PubMed  Google Scholar 

  52. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147. https://doi.org/10.1126/science.282.5391.1145

    Article  CAS  PubMed  Google Scholar 

  53. Mimeault M, Hauke R, Batra SK (2007) Stem cells: A revolution in therapeutics—recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. Clin Pharmacol Ther 82:252–264

    CAS  PubMed  Google Scholar 

  54. Brevini TA, Pennarossa G, Antonini S, Gandolfi F (2008) Parthenogenesis as an approach to pluripotency: advantages and limitations involved. Stem Cell Rev 4:127–135. https://doi.org/10.1007/s12015-008-9027-z

    Article  CAS  PubMed  Google Scholar 

  55. Iseki M, Kushida Y, Wakao S, Akimoto T, Mizuma M, Motoi F, Asada R, Shimizu S et al (2017) Muse cells, nontumorigenic pluripotent-like stem cells, have liver regeneration capacity through specific homing and cell replacement in a mouse model of liver fibrosis. Cell Transplant 26:821–840. https://doi.org/10.3727/096368916X693662

    Article  PubMed  PubMed Central  Google Scholar 

  56. Annas GJ, Elias S (1989) The politics of transplantation of human fetal tissue. N Engl J Med 320:1079–1082. https://doi.org/10.1056/NEJM198904203201610

    Article  CAS  PubMed  Google Scholar 

  57. Barker N, Bartfeld S, Clevers H (2010) Tissue-resident adult stem cell populations of rapidly self-renewing organs. Cell Stem Cell 7:656–670

    CAS  PubMed  Google Scholar 

  58. Ehnert S, Glanemann M, Schmitt A, Vogt S, Shanny N, Nussler NC, Stöckle U, Nussler A (2009) The possible use of stem cells in regenerative medicine: dream or reality? Langenbeck Arch Surg 394:985–997. https://doi.org/10.1007/s00423-009-0546-0

    Article  Google Scholar 

  59. Nam H, Lee K-H, Nam D-H, Joo KM (2015) Adult human neural stem cell therapeutics: current developmental status and prospect. World J Stem Cells 7:126–136. https://doi.org/10.4252/wjsc.v7.i1.126

    Article  PubMed  PubMed Central  Google Scholar 

  60. Sharma RR, Pollock K, Hubel A, McKenna D (2014) Mesenchymal stem or stromal cells: a review of clinical applications and manufacturing practices. Transfusion 54:1418–1437. https://doi.org/10.1111/trf.12421

    Article  CAS  PubMed  Google Scholar 

  61. Lindvall O, Kokaia Z (2010) Stem cells in human neurodegenerative disorders—time for clinical translation? J Clin Invest 120:29–40

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Gincberg G, Arien-Zakay H, Lazarovici P, Lelkes PI (2012) Neural stem cells: therapeutic potential for neurodegenerative diseases. Br Med Bull 104:7–19. https://doi.org/10.1093/bmb/lds024

    Article  CAS  PubMed  Google Scholar 

  63. Lee PH, Lee JE, Kim H-S, Song SK, Lee HS, Nam HS, Cheong JW, Jeong Y et al (2012) A randomized trial of mesenchymal stem cells in multiple system atrophy. Ann Neurol 72:32–40. https://doi.org/10.1002/ana.23612

    Article  PubMed  Google Scholar 

  64. Honmou O, Houkin K, Matsunaga T, Niitsu Y, Ishiai S, Onodera R, Waxman SG, Kocsis JD (2011) Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke. Brain 134:1790–1807. https://doi.org/10.1093/brain/awr063

    Article  PubMed  PubMed Central  Google Scholar 

  65. Chung TN, Kim JH, Choi BY, Chung SP, Kwon SW, Suh SW (2015) Adipose-derived mesenchymal stem cells reduce neuronal death after transient global cerebral ischemia through prevention of blood-brain barrier disruption and endothelial damage. Stem Cells Transl Med 4:178–185. https://doi.org/10.5966/sctm.2014-0103

    Article  CAS  PubMed  Google Scholar 

  66. Petrou P, Gothelf Y, Argov Z, Gotkine M, Levy YS, Kassis I, Vaknin-Dembinsky A, Ben-Hur T et al (2016) Safety and clinical effects of mesenchymal stem cells secreting neurotrophic factor transplantation in patients with amyotrophic lateral sclerosis: results of phase 1/2 and 2a clinical trials stem cell transplantation in amyotrophic lateral sclerosis stem cell transplantation in amyotrophic lateral sclerosis. JAMA Neurol 73:337–344. https://doi.org/10.1001/jamaneurol.2015.4321

    Article  PubMed  Google Scholar 

  67. Mazzini L, Mareschi K, Ferrero I, Vassallo E, Oliveri G, Boccaletti R, Testa L, Livigni S et al (2006) Autologous mesenchymal stem cells: clinical applications in amyotrophic lateral sclerosis. Neurol Res 28:523–526. https://doi.org/10.1179/016164106X116791

    Article  PubMed  Google Scholar 

  68. Li J-F, Zhang D-J, Geng T, Chen L, Huang H, Yin H-L, Zhang YZ, Lou JY et al (2014) The potential of human umbilical cord-derived mesenchymal stem cells as a novel cellular therapy for multiple sclerosis. Cell Transplant 23:113–122. https://doi.org/10.3727/096368914X685005

    Article  CAS  Google Scholar 

  69. Cheng H, Liu X, Hua R, Dai G, Wang X, Gao J, An Y (2014) Clinical observation of umbilical cord mesenchymal stem cell transplantation in treatment for sequelae of thoracolumbar spinal cord injury. J Transl Med 12:253. https://doi.org/10.1186/s12967-014-0253-7

    Article  PubMed  PubMed Central  Google Scholar 

  70. Doetsch F, Petreanu L, Caille I, Garcia-Verdugo J-M, Alvarez-Buylla A (2002) EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 36:1021–1034. https://doi.org/10.1016/S0896-6273(02)01133-9

    Article  CAS  PubMed  Google Scholar 

  71. Ehninger D, Kempermann G (2008) Neurogenesis in the adult hippocampus. Cell Tissue Res 331:243–250. https://doi.org/10.1007/s00441-007-0478-3

    Article  PubMed  Google Scholar 

  72. Lugert S, Basak O, Knuckles P, Haussler U, Fabel K, Götz M, Haas CA, Kempermann G et al (2010) Quiescent and active hippocampal neural stem cells with distinct morphologies respond selectively to physiological and pathological stimuli and aging. Cell Stem Cell 6:445–456. https://doi.org/10.1016/j.stem.2010.03.017

    Article  CAS  PubMed  Google Scholar 

  73. Kempermann G, Jessberger S, Steiner B, Kronenberg G (2004) Milestones of neuronal development in the adult hippocampus. Trends Neurosci 27:447–452

    CAS  PubMed  Google Scholar 

  74. Bond Allison M, Ming G-l, Song H (2015) Adult mammalian neural stem cells and neurogenesis: five decades later. Cell Stem Cell 17:385–395. https://doi.org/10.1016/j.stem.2015.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Encinas JM, Vaahtokari A, Enikolopov G (2006) Fluoxetine targets early progenitor cells in the adult brain. Proc Natl Acad Sci U S A 103:8233–8238. https://doi.org/10.1073/pnas.0601992103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Suh H, Consiglio A, Ray J, Sawai T, D'Amour KA, Gage FH (2007) In vivo fate analysis reveals the multipotent and self-renewal capacities of Sox2+ neural stem cells in the adult hippocampus. Cell Stem Cell 1:515–528. https://doi.org/10.1016/j.stem.2007.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Messam CA, Hou J, Major EO (2000) Coexpression of nestin in neural and glial cells in the developing human CNS defined by a human-specific anti-nestin antibody. Exp Neurol 161:585–596. https://doi.org/10.1006/exnr.1999.7319

    Article  CAS  PubMed  Google Scholar 

  78. Suh H, Deng W, Gage FH (2009) Signaling in adult neurogenesis. Annu Rev Cell Dev Biol 25:253–275. https://doi.org/10.1146/annurev.cellbio.042308.113256

    Article  CAS  PubMed  Google Scholar 

  79. Yener Ilce B, Cagin U, Yilmazer A (2018) Cellular reprogramming: a new way to understand aging mechanisms. Wiley Interdiscip Rev Dev Biol 7. https://doi.org/10.1002/wdev.308

  80. Singh H, Khan AA, Dinner AR (2014) Gene regulatory networks in the immune system. Trends Immunol 35:211–218. https://doi.org/10.1016/j.it.2014.03.006

    Article  CAS  PubMed  Google Scholar 

  81. Fong AP, Tapscott SJ (2013) Skeletal muscle programming and re-programming. Curr Opin Genet Dev 23:568–573. https://doi.org/10.1016/j.gde.2013.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lee HK, Lee HS, Moody SA (2014) Neural transcription factors: from embryos to neural stem cells. Mol Cells 37:705–712. https://doi.org/10.14348/molcells.2014.0227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hevner RF, Hodge RD, Daza RA, Englund C (2006) Transcription factors in glutamatergic neurogenesis: conserved programs in neocortex, cerebellum, and adult hippocampus. Neurosci Res 55:223–233. https://doi.org/10.1016/j.neures.2006.03.004

    Article  CAS  PubMed  Google Scholar 

  84. Arlotta P, Molyneaux BJ, Chen J, Inoue J, Kominami R, Macklis JD (2005) Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron 45:207–221

    CAS  PubMed  Google Scholar 

  85. Zhang M, Li K, Xie M, Ding S (2015) Chemical approaches to controlling cell fate. In: Moody SA (ed) Principles of developmental genetics, second edn. Academic Press, Oxford, pp. 59–76. https://doi.org/10.1016/B978-0-12-405945-0.00004-1

  86. Kim J, Efe JA, Zhu S, Talantova M, Yuan X, Wang S, Lipton SA, Zhang K et al (2011) Direct reprogramming of mouse fibroblasts to neural progenitors. Proc Natl Acad Sci 108:7838–7843. https://doi.org/10.1073/pnas.1103113108

    Article  PubMed  PubMed Central  Google Scholar 

  87. Zhang Z, Alexanian AR (2014) The neural plasticity of early-passage human bone marrow-derived mesenchymal stem cells and their modulation with chromatin-modifying agents. J Tissue Eng Regen Med 8:407–413

    CAS  PubMed  Google Scholar 

  88. von Bohlen und Halbach O (2007) Immunohistological markers for staging neurogenesis in adult hippocampus. Cell Tissue Res 329:409–420. https://doi.org/10.1007/s00441-007-0432-4

  89. Zhang M, Lin Y-H, Sun Yujiao J, Zhu S, Zheng J, Liu K et al (2016) Pharmacological reprogramming of fibroblasts into neural stem cells by signaling-directed transcriptional activation. Cell Stem Cell 18:653–667. https://doi.org/10.1016/j.stem.2016.03.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bang SY, Kwon SH, Yi SH, Yi SA, Park EK, Lee JC, Jang CG, You JS et al (2015) Epigenetic activation of the Foxa2 gene is required for maintaining the potential of neural precursor cells to differentiate into dopaminergic neurons after expansion. Stem Cells Dev 24:520–533. https://doi.org/10.1089/scd.2014.0218

    Article  CAS  PubMed  Google Scholar 

  91. Lee JH, Mitchell RR, McNicol JD, Shapovalova Z, Laronde S, Tanasijevic B et al (2015) Single transcription factor conversion of human blood fate to NPCs with CNS and PNS developmental capacity. Cell Rep 11:1367–1376. https://doi.org/10.1016/j.celrep.2015.04.056

    Article  CAS  PubMed  Google Scholar 

  92. Maekawa M, Yamaguchi K, Nakamura T, Shibukawa R, Kodanaka I, Ichisaka T, Kawamura Y, Mochizuki H et al (2011) Direct reprogramming of somatic cells is promoted by maternal transcription factor Glis1. Nature 474:225–229. https://doi.org/10.1038/nature10106

    Article  CAS  PubMed  Google Scholar 

  93. Xie X, Fu Y, Liu J (2017) Chemical reprogramming and transdifferentiation. Curr Opin Genet Dev 46:104–113. https://doi.org/10.1016/j.gde.2017.07.003

    Article  CAS  PubMed  Google Scholar 

  94. Yu J, Thomson JA (2014) Chapter 30 - induced pluripotent stem cells. In: Lanza R, Langer R, Vacanti J (eds) Principles of tissue engineering, 4th edn. Academic Press, Boston, pp. 581–594. https://doi.org/10.1016/B978-0-12-398358-9.00030-6

    Chapter  Google Scholar 

  95. Takeda Y, Harada Y, Yoshikawa T, Dai P (2018) Chemical compound-based direct reprogramming for future clinical applications. Biosci Rep 38:BSR20171650. https://doi.org/10.1042/BSR20171650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Davis RL, Weintraub H, Lassar AB (1987) Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51:987–1000. https://doi.org/10.1016/0092-8674(87)90585-X

    Article  CAS  PubMed  Google Scholar 

  97. Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA (2008) In vivo reprogramming of adult pancreatic exocrine cells to β-cells. Nature 455:627–632. https://doi.org/10.1038/nature07314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ring Karen L, Tong Leslie M, Balestra Maureen E, Javier R, Andrews-Zwilling Y, Li G et al (2012) Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell 11:100–109. https://doi.org/10.1016/j.stem.2012.05.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sekiya S, Suzuki A (2011) Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. Nature 475:390–393. https://doi.org/10.1038/nature10263

    Article  CAS  PubMed  Google Scholar 

  100. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Südhof TC, Wernig M (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463:1035–1041. https://doi.org/10.1038/nature08797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Pang ZP, Yang N, Vierbuchen T, Ostermeier A, Fuentes DR, Yang TQ, Citri A, Sebastiano V et al (2011) Induction of human neuronal cells by defined transcription factors. Nature 476:220–223. https://doi.org/10.1038/nature10202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Yoo AS, Sun AX, Li L, Shcheglovitov A, Portmann T, Li Y, Lee-Messer C, Dolmetsch RE et al (2011) MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 476:228–231. https://doi.org/10.1038/nature10323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kim J, Su Susan C, Wang H, Cheng Albert W, Cassady John P, Lodato Michael A et al (2011) Functional integration of dopaminergic neurons directly converted from mouse fibroblasts. Cell Stem Cell 9:413–419. https://doi.org/10.1016/j.stem.2011.09.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lujan E, Chanda S, Ahlenius H, Südhof TC, Wernig M (2012) Direct conversion of mouse fibroblasts to self-renewing, tripotent neural precursor cells. P Natl Acad Sci 109:2527–2532. https://doi.org/10.1073/pnas.1121003109

    Article  Google Scholar 

  105. Zhang Y, Li W, Laurent T, Ding S (2012) Small molecules, big roles – the chemical manipulation of stem cell fate and somatic cell reprogramming. J Cell Sci 125:5609–5620. https://doi.org/10.1242/jcs.096032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hevner RF, Hodge RD, Daza RAM, Englund C (2006) Transcription factors in glutamatergic neurogenesis: conserved programs in neocortex, cerebellum, and adult hippocampus. Neurosci Res 55:223–233. https://doi.org/10.1016/j.neures.2006.03.004

    Article  CAS  PubMed  Google Scholar 

  107. Pontious A, Kowalczyk T, Englund C, Hevner RF (2008) Role of intermediate progenitor cells in cerebral cortex development. Dev Neurosci 30:24–32. https://doi.org/10.1159/000109848

    Article  CAS  PubMed  Google Scholar 

  108. Hodge RD, Kowalczyk TD, Wolf SA, Encinas JM, Rippey C, Enikolopov G, Kempermann G, Hevner RF (2008) Intermediate progenitors in adult hippocampal neurogenesis: Tbr2 expression and coordinate regulation of neuronal output. J Neurosci 28:3707–3717. https://doi.org/10.1523/jneurosci.4280-07.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Roybon L, Hjalt T, Stott S, Guillemot F, Li J-Y, Brundin P (2009) Neurogenin2 directs granule neuroblast production and amplification while neurod1 specifies neuronal fate during hippocampal neurogenesis. PLoS One 4:e4779. https://doi.org/10.1371/journal.pone.0004779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Estivill-Torrus G, Pearson H, van Heyningen V, Price DJ, Rashbass P (2002) Pax6 is required to regulate the cell cycle and the rate of progression from symmetrical to asymmetrical division in mammalian cortical progenitors. Development 129:455–466

    CAS  PubMed  Google Scholar 

  111. Sun J, Rockowitz S, Xie Q, Ashery-Padan R, Zheng D, Cvekl AJNar (2015) Identification of in vivo DNA-binding mechanisms of Pax6 and reconstruction of Pax6-dependent gene regulatory networks during forebrain and lens development. Nucleic Acids Res 43:6827–6846. https://doi.org/10.1093/nar/gkv589

  112. Hiraoka K, Sumiyoshi A, Nonaka H, Kikkawa T, Kawashima R, Osumi NJPo (2016) Regional volume decreases in the brain of Pax6 heterozygous mutant rats: MRI deformation-based morphometry. PLoS One 11:e0158153. https://doi.org/10.1371/journal.pone.0158153

  113. Manuel MN, Mi D, Mason JO, Price DJ (2015) Regulation of cerebral cortical neurogenesis by the Pax6 transcription factor. Front Cell Neurosci 9:70. https://doi.org/10.3389/fncel.2015.00070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Inoue T, Nakamura S, Osumi N (2000) Fate mapping of the mouse prosencephalic neural plate. Dev Biol 219:373–383. https://doi.org/10.1006/dbio.2000.9616

    Article  CAS  PubMed  Google Scholar 

  115. Takahashi M, Osumi N (2002) Pax6 regulates specification of ventral neurone subtypes in the hindbrain by establishing progenitor domains. Development 129:1327–1338

    CAS  PubMed  Google Scholar 

  116. Favaro R, Valotta M, Ferri ALM, Latorre E, Mariani J, Giachino C, Lancini C, Tosetti V et al (2009) Hippocampal development and neural stem cell maintenance require sox2-dependent regulation of Shh. Nat Neurosci 12:1248–1256. https://doi.org/10.1038/nn.2397

    Article  CAS  PubMed  Google Scholar 

  117. Kuwabara T, Hsieh J, Muotri A, Yeo G, Warashina M, Lie DC, Moore L, Nakashima K et al (2009) Wnt-mediated activation of neurod1 and retro-elements during adult neurogenesis. Nat Neurosci 12:1097–1105. https://doi.org/10.1038/nn.2360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ehm O, Göritz C, Covic M, Schäffner I, Schwarz TJ, Karaca E et al (2010) RBPJκ-dependent signaling is essential for long-term maintenance of neural stem cells in the adult hippocampus. J Neurosci 30:13794–13807. https://doi.org/10.1523/jneurosci.1567-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Brill MS, Snapyan M, Wohlfrom H, Ninkovic J, Jawerka M, Mastick GS, Ashery-Padan R, Saghatelyan A et al (2008) A Dlx2- and Pax6-dependent transcriptional code for periglomerular neuron specification in the adult olfactory bulb. J Neurosci 28:6439–6452. https://doi.org/10.1523/JNEUROSCI.0700-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Long JE, Cobos I, Potter GB, Rubenstein JL (2009) Dlx1&2 and Mash1 transcription factors control MGE and CGE patterning and differentiation through parallel and overlapping pathways. Cereb Cortex 19:i96–i106

    PubMed  PubMed Central  Google Scholar 

  121. Croci O, De Fazio S, Biagioni F, Donato E, Caganova M, Curti L et al (2017) Transcriptional integration of mitogenic and mechanical signals by Myc and YAP. Genes Dev 31:2017–2022. https://doi.org/10.1101/gad.301184.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Mastick GS, Andrews GL (2001) Pax6 regulates the identity of embryonic diencephalic neurons. Mol Cell Neurosci 17:190–207. https://doi.org/10.1006/mcne.2000.0924

    Article  CAS  PubMed  Google Scholar 

  123. Andrews GL, Yun K, Rubenstein JL, Mastick GS (2003) Dlx transcription factors regulate differentiation of dopaminergic neurons of the ventral thalamus. Mol Cell Neurosci 23:107–120. https://doi.org/10.1016/s1044-7431(03)00016-2

    Article  CAS  PubMed  Google Scholar 

  124. Tetzlaff W, Kobayashi N, Giehl K, Tsui B, Cassar SA, Bedard A (1994) Response of rubrospinal and corticospinal neurons to injury and neurotrophins. In: Progress in Brain Research, vol 103. Elsevier, pp 271–286

  125. Bomze HM, Bulsara KR, Iskandar BJ, Caroni P, Skene JP (2001) Spinal axon regeneration evoked by replacing two growth cone proteins in adult neurons. Nat Neurosci 4:38–43. https://doi.org/10.1038/82881

    Article  CAS  PubMed  Google Scholar 

  126. Haas CA, Hollerbach E, Deller T, Naumann T, Frotscher M (2000) Up-regulation of growth-associated protein 43 mRNA in rat medial septum neurons axotomized by fimbria-fornix transection. Eur J Neurosci 12:4233–4242. https://doi.org/10.1046/j.0953-816X.2000.01329.x

    Article  CAS  PubMed  Google Scholar 

  127. Oestreicher AB, De Graan PN, Gispen WH, Verhaagen J, Schrama LH (1997) B-50, the growth associated protein-43: modulation of cell morphology and communication in the nervous system. Prog Neurobiol 53:627–686. https://doi.org/10.1016/s0301-0082(97)00043-9

    Article  CAS  PubMed  Google Scholar 

  128. Holtmaat A, Dijkhuizen PA, Oestreicher A, Romijn H, Van der Lugt N, Berns A et al (1995) Directed expression of the growth-associated protein B-50/GAP-43 to olfactory neurons in transgenic mice results in changes in axon morphology and extraglomerular fiber growth. J Neurosci 15:7953–7965

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Haas CA, Frotscher M (1998) Role of NGF in axotomy-induced c-JUN expressionin medial septal cholinergic neurons. Int J Dev Neurosci 16:691–703

    CAS  PubMed  Google Scholar 

  130. Herdegen T, Skene P, Bähr M (1997) The c-Jun transcription factor–bipotential mediator of neuronal death, survival and regeneration. Trends Neurosci 20:227–231

    CAS  PubMed  Google Scholar 

  131. Tetzlaff W, Alexander SW, Miller FD, Bisby MA (1991) Response of facial and rubrospinal neurons to axotomy: changes in mRNA expression for cytoskeletal proteins and gap-43. J Neurosci 11:2528–2544

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Pfisterer U, Kirkeby A, Torper O, Wood J, Nelander J, Dufour A, Bjorklund A, Lindvall O et al (2011) Direct conversion of human fibroblasts to dopaminergic neurons. Proc Natl Acad Sci U S A 108:10343–10348. https://doi.org/10.1073/pnas.1105135108

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.S. did the literature search and wrote the initial draft. A.S. and S.A.M. edited all subsequent drafts.

Corresponding author

Correspondence to Shaker A. Mousa.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

(Include appropriate statements)

Code Availability

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sallam, A., Mousa, S.A. Neurodegenerative Diseases and Cell Reprogramming. Mol Neurobiol 57, 4767–4777 (2020). https://doi.org/10.1007/s12035-020-02039-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-02039-5

Keywords

Navigation