1887

Abstract

are abundant soil bacteria and the major symbiont of legumes. The recent availability of genome sequences provides a large source of information for analysis of symbiotic traits. In this study, we investigated the evolutionary dynamics of the nodulation genes () and their relationship with the genes encoding type III secretion systems (T3SS) and their effectors among bradyrhizobia. Based on the comparative analysis of 146 genome sequences, we identified six different types of T3SS gene clusters. The two predominant cluster types are designated RhcIa and RhcIb and both belong to the RhcI-T3SS family previously described in other rhizobia. They are found in 92/146 strains, most of them also containing genes. RhcIa and RhcIb gene clusters differ in the genes they carry: while the translocon-encoding gene is systematically found in strains containing RhcIb, the and genes are specifically conserved in strains containing RhcIa, suggesting that these last two genes might functionally substitute and play a role related to effector translocation. Phylogenetic analysis suggests that bradyrhizobia simultaneously gained and RhcI-T3SS gene clusters via horizontal transfer or subsequent vertical inheritance of a symbiotic island containing both. Sequence similarity searches for known Nop effector proteins in bradyrhizobial proteomes revealed the absence of a so-called core effectome, i.e. that no effector is conserved among all strains. However, NopM and SUMO proteases were found to be the main effector families, being represented in the majority of the genus. This study indicates that bradyrhizobial T3SSs might play a more significant symbiotic role than previously thought and provides new candidates among T3SS structural proteins and effectors for future functional investigations.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000407
2020-08-12
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/mgen/6/9/mgen000407.html?itemId=/content/journal/mgen/10.1099/mgen.0.000407&mimeType=html&fmt=ahah

References

  1. Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benavent-González A, Eldridge DJ et al. A global atlas of the dominant bacteria found in soil. Science 2018; 359:320–325 [View Article][PubMed]
    [Google Scholar]
  2. VanInsberghe D, Maas KR, Cardenas E, Strachan CR, Hallam SJ et al. Non-symbiotic Bradyrhizobium ecotypes dominate North American forest soils. ISME J 2015; 9:2435–2441 [View Article][PubMed]
    [Google Scholar]
  3. Jones FP, Clark IM, King R, Shaw LJ, Woodward MJ et al. Novel European free-living, non-diazotrophic Bradyrhizobium isolates from contrasting soils that lack nodulation and nitrogen fixation genes - a genome comparison. Sci Rep 2016; 6:25858 [View Article][PubMed]
    [Google Scholar]
  4. Oldroyd GED, Speak OGE. Speak, Friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 2013; 11:252–263 [View Article][PubMed]
    [Google Scholar]
  5. Giraud E, Moulin L, Vallenet D, Barbe V, Cytryn E et al. Legumes symbioses: absence of NOD genes in photosynthetic bradyrhizobia. Science 2007; 316:1307–1312 [View Article][PubMed]
    [Google Scholar]
  6. Masson-Boivin C, Giraud E, Perret X, Batut J. Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes?. Trends Microbiol 2009; 17:458–466 [View Article][PubMed]
    [Google Scholar]
  7. Masson-Boivin C, Sachs JL. Symbiotic nitrogen fixation by rhizobia-the roots of a success story. Curr Opin Plant Biol 2018; 44:7–15 [View Article][PubMed]
    [Google Scholar]
  8. Zhao R, Liu LX, Zhang YZ, Jiao J, Cui WJ et al. Adaptive evolution of rhizobial symbiotic compatibility mediated by co-evolved insertion sequences. ISME J 2018; 12:101–111 [View Article][PubMed]
    [Google Scholar]
  9. Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T et al. Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res 2002; 9:189–197 [View Article][PubMed]
    [Google Scholar]
  10. Reeve W, van Berkum P, Ardley J, Tian R, Gollagher M et al. High-quality permanentdraft genome sequence of the Bradyrhizobium elkanii type strain USDA 76T, isolated from Glycine max (L.) Merr. Stand Genomic Sci 2017; 12:26 [View Article][PubMed]
    [Google Scholar]
  11. Gully D, Teulet A, Busset N, Nouwen N, Fardoux J et al. Complete genome sequence of Bradyrhizobium sp. ORS285, a photosynthetic strain able to establish Nod factor-dependent or Nod factor-independent symbiosis with Aeschynomene legumes. Genome Announc 2018; 5:e00421–17
    [Google Scholar]
  12. Le Quéré A, Gully D, Teulet A, Navarro E, Gargani D et al. Complete genome sequence of Bradyrhizobium sp. strain ORS3257, an efficient nitrogen-fixing bacterium isolated from cowpea in Senegal. Microbiol Resour Announc 2019; 8:e01449–18 [View Article][PubMed]
    [Google Scholar]
  13. Deng W, Marshall NC, Rowland JL, McCoy JM, Worrall LJ et al. Assembly, structure, function and regulation of type III secretion systems. Nat Rev Microbiol 2017; 15:323–337 [View Article][PubMed]
    [Google Scholar]
  14. Büttner D. Behind the lines-actions of bacterial type III effector proteins in plant cells. FEMS Microbiol Rev 2016; 40:894–937 [View Article][PubMed]
    [Google Scholar]
  15. Deakin WJ, Broughton WJ. Symbiotic use of pathogenic strategies: rhizobial protein secretion systems. Nat Rev Microbiol 2009; 7:312–320 [View Article][PubMed]
    [Google Scholar]
  16. Staehelin C, Krishnan HB. Nodulation outer proteins: double-edged swords of symbiotic rhizobia. Biochem J 2015; 470:263–274 [View Article][PubMed]
    [Google Scholar]
  17. Tampakaki AP. Commonalities and differences of T3SSs in rhizobia and plant pathogenic bacteria. Front Plant Sci 2014; 5:114 [View Article][PubMed]
    [Google Scholar]
  18. Krause A, Doerfel A, Göttfert M. Mutational and transcriptional analysis of the type III secretion system of Bradyrhizobium japonicum . Mol Plant Microbe Interact 2002; 15:1228–1235 [View Article][PubMed]
    [Google Scholar]
  19. Wassem R, Kobayashi H, Kambara K, Le Quéré A, Walker GC et al. TtsI regulates symbiotic genes in Rhizobium species NGR234 by binding to tts boxes. Mol Microbiol 2008; 68:736–748 [View Article][PubMed]
    [Google Scholar]
  20. Miwa H, Okazaki S. How effectors promote beneficial interactions. Curr Opin Plant Biol 2017; 38:148–154 [View Article][PubMed]
    [Google Scholar]
  21. Yang S, Tang F, Gao M, Krishnan HB, Zhu H. R gene-controlled host specificity in the legume-rhizobia symbiosis. Proc Natl Acad Sci USA 2010; 107:18735–18740 [View Article][PubMed]
    [Google Scholar]
  22. Sugawara M, Takahashi S, Umehara Y, Iwano H, Tsurumaru H et al. Variation in bradyrhizobial NopP effector determines symbiotic incompatibility with Rj2-soybeans via effector-triggered immunity. Nat Commun 2018; 9:3139 [View Article][PubMed]
    [Google Scholar]
  23. Okazaki S, Kaneko T, Sato S, Saeki K. Hijacking of leguminous nodulation signaling by the rhizobial type III secretion system. Proc Natl Acad Sci USA 2013; 110:17131–17136 [View Article][PubMed]
    [Google Scholar]
  24. Okazaki S, Tittabutr P, Teulet A, Thouin J, Fardoux J et al. Rhizobium-legume symbiosis in the absence of Nod factors: two possible scenarios with or without the T3SS. ISME J 2016; 10:64–74 [View Article][PubMed]
    [Google Scholar]
  25. Teulet A, Busset N, Fardoux J, Gully D, Chaintreuil C et al. The rhizobial type III effector eRNA confers the ability to form nodules in legumes. Proc Natl Acad Sci USA 2019; 116:21758–21768 [View Article][PubMed]
    [Google Scholar]
  26. Lassalle F, Veber P, Jauneikaite E, Didelot X. Automated reconstruction of all gene histories in large bacterial pangenome datasets and search for co-evolved gene modules with Pantagruel. bioRxiv 2019; 586495:
    [Google Scholar]
  27. Steinegger M, Söding J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat Biotechnol 2017; 35:1026–1028 [View Article][PubMed]
    [Google Scholar]
  28. Sievers F, Higgins DG, Desmond GH. Clustal omega for making accurate alignments of many protein sequences. Protein Sci 2018; 27:135–145 [View Article][PubMed]
    [Google Scholar]
  29. Suyama M, Torrents D, Bork P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res 2006; 34:W609–W612 [View Article][PubMed]
    [Google Scholar]
  30. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Phylogenetics 2013; 30:1312–1313
    [Google Scholar]
  31. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 2012; 61:539–542 [View Article][PubMed]
    [Google Scholar]
  32. Vallenet D, Calteau A, Cruveiller S, Gachet M, Lajus A et al. Microscope in 2017: an expanding and evolving integrated resource for community expertise of microbial genomes. Nucleic Acids Res 2017; 45:D517–D528 [View Article][PubMed]
    [Google Scholar]
  33. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article][PubMed]
    [Google Scholar]
  34. Cohen O, Ashkenazy H, Belinky F, Huchon D, Pupko T. GLOOME: gain loss mapping engine. Bioinformatics 2010; 26:2914–2915 [View Article][PubMed]
    [Google Scholar]
  35. Szöllősi GJ, Tannier E, Daubin V, Boussau B. The inference of gene trees with species trees. Syst Biol 2015; 64:e42–e62 [View Article][PubMed]
    [Google Scholar]
  36. Morel B, Kozlov AM, Stamatakis A, Szöllősi GJ. GeneRax: a tool for species tree-aware maximum likelihood based gene tree inference under gene duplication, transfer, and loss. bioRxiv 2019; 779066:
    [Google Scholar]
  37. Connor TR, Loman NJ, Thompson S, Smith A, Southgate J et al. CLIMB (the cloud infrastructure for microbial bioinformatics): an online resource for the medical microbiology community. Microb Genom 2016; 2:e000086 [View Article][PubMed]
    [Google Scholar]
  38. Okazaki S, Noisangiam R, Okubo T, Kaneko T, Oshima K et al. Genome analysis of a novel Bradyrhizobium sp. DOA9 carrying a symbiotic plasmid. PLoS One 2015; 10:e0117392 [View Article][PubMed]
    [Google Scholar]
  39. Iida T, Itakura M, Anda M, Sugawara M, Isawa T et al. Symbiosis island shuffling with abundant insertion sequences in the genomes of extra-slow-growing strains of soybean bradyrhizobia. Appl Environ Microbiol 2015; 81:4143–4154 [View Article][PubMed]
    [Google Scholar]
  40. Miché L, Moulin L, Chaintreuil C, Contreras-Jimenez JL, Munive-Hernández J-A et al. Diversity analyses of Aeschynomene symbionts in Tropical Africa and Central America reveal that nod-independent stem nodulation is not restricted to photosynthetic bradyrhizobia. Environ Microbiol 2010; 12:2152–2164 [View Article][PubMed]
    [Google Scholar]
  41. Okubo T, Fukushima S, Itakura M, Oshima K, Longtonglang A et al. Genome analysis suggests that the soil oligotrophic bacterium Agromonas oligotrophica (Bradyrhizobium oligotrophicum) is a nitrogen-fixing symbiont of Aeschynomene indica . Appl Environ Microbiol 2013; 79:2542–2551 [View Article][PubMed]
    [Google Scholar]
  42. Tian R, Parker M, Seshadri R, Reddy T, Markowitz V et al. High-quality permanent draft genome sequence of Bradyrhizobium sp. Tv2a.2, a microsymbiont of Tachigali versicolor discovered in Barro Colorado Island of Panama. Stand Genomic Sci 2015; 10:27 [View Article][PubMed]
    [Google Scholar]
  43. Stępkowski T, Watkin E, McInnes A, Gurda D, Gracz J et al. Distinct Bradyrhizobium [corrected] communities nodulate legumes native to temperate and tropical monsoon Australia. Mol Phylogenet Evol 2012; 63:265–277 [View Article][PubMed]
    [Google Scholar]
  44. van Berkum P, Fuhrmann JJ. Evolutionary relationships among the soybean bradyrhizobia reconstructed from 16S rRNA gene and internally transcribed spacer region sequence divergence. Int J Syst Evol Microbiol 2000; 50 Pt 6:2165–2172 [View Article][PubMed]
    [Google Scholar]
  45. Benzine J, Shelobolina E, Xiong MY, Kennedy DW, McKinley JP et al. Fe-phyllosilicate redox cycling organisms from a redox transition zone in Hanford 300 area sediments. Front Microbiol 2013; 4:388 [View Article][PubMed]
    [Google Scholar]
  46. Crovadore J, Calmin G, Cochard B, Chablais R, Lefort F. Whole-genome sequence of Bradyrhizobium elkanii strain UASWS1015, a highly ammonia-tolerant nitrifying bacterium. Genome Announc 2016; 4:e00111–00116 [View Article][PubMed]
    [Google Scholar]
  47. van Berkum P, Elia P, Song Q, Eardly BD. Development and application of a multilocus sequence analysis method for the identification of genotypes within genus Bradyrhizobium and for establishing nodule occupancy of soybean (Glycine max L. Merr). Mol Plant Microbe Interact 2012; 25:321–330 [View Article][PubMed]
    [Google Scholar]
  48. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  49. de Lajudie PM, Andrews M, Ardley J, Eardly B, Jumas-Bilak E et al. Minimal standards for the description of new genera and species of rhizobia and agrobacteria. Int J Syst Evol Microbiol 2019; 69:1852–1863 [View Article][PubMed]
    [Google Scholar]
  50. Avontuur JR, Palmer M, Beukes CW, Chan WY, Coetzee MPA et al. Genome-informed Bradyrhizobium taxonomy: where to from here?. Syst Appl Microbiol 2019; 42:427–439 [View Article][PubMed]
    [Google Scholar]
  51. Garrido-Sanz D, Redondo-Nieto M, Mongiardini E, Blanco-Romero E, Durán D et al. Phylogenomic analyses of Bradyrhizobium reveal uneven distribution of the lateral and subpolar flagellar systems, which extends to Rhizobiales . Microorganisms 2019; 7:50 [View Article][PubMed]
    [Google Scholar]
  52. Troisfontaines P, Cornelis GR. Type III secretion: more systems than you think. Physiology 2005; 20:326–339 [View Article][PubMed]
    [Google Scholar]
  53. Hu Y, Huang H, Cheng X, Shu X, White AP et al. A global survey of bacterial type III secretion systems and their effectors. Environ Microbiol 2017; 19:3879–3895 [View Article][PubMed]
    [Google Scholar]
  54. Schmeisser C, Liesegang H, Krysciak D, Bakkou N, Le Quéré A et al. Rhizobium sp. strain NGR234 possesses a remarkable number of secretion systems. Appl Environ Microbiol 2009; 75:4035–4045 [View Article][PubMed]
    [Google Scholar]
  55. Weidner S, Becker A, Bonilla I, Jaenicke S, Lloret J et al. Genome sequence of the soybean symbiont Sinorhizobium fredii HH103. J Bacteriol 2012; 194:1617–1618 [View Article][PubMed]
    [Google Scholar]
  56. Schuldes J, Rodriguez Orbegoso M, Schmeisser C, Krishnan HB, Daniel R et al. Complete genome sequence of the broad-host-range strain Sinorhizobium fredii USDA257. J Bacteriol 2012; 194:4483 [View Article][PubMed]
    [Google Scholar]
  57. Gazi AD, Sarris PF, Fadouloglou VE, Charova SN, Mathioudakis N et al. Phylogenetic analysis of a gene cluster encoding an additional, rhizobial-like type III secretion system that is narrowly distributed among Pseudomonas syringae strains. BMC Microbiol 2012; 12:188 [View Article][PubMed]
    [Google Scholar]
  58. Hueck CJ. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 1998; 62:379–433 [View Article][PubMed]
    [Google Scholar]
  59. Okazaki S, Zehner S, Hempel J, Lang K, Göttfert M. Genetic organization and functional analysis of the type III secretion system of Bradyrhizobium elkanii . FEMS Microbiol Lett 2009; 295:88–95 [View Article][PubMed]
    [Google Scholar]
  60. Kimbrel JA, Thomas WJ, Jiang Y, Creason AL, Thireault CA et al. Mutualistic co-evolution of type III effector genes in Sinorhizobium fredii and Bradyrhizobium japonicum . PLoS Pathog 2013; 9:e1003204 [View Article][PubMed]
    [Google Scholar]
  61. Hempel J, Zehner S, Göttfert M, Patschkowski T. Analysis of the secretome of the soybean symbiont Bradyrhizobium japonicum . J Biotechnol 2009; 140:51–58 [View Article][PubMed]
    [Google Scholar]
  62. Jiménez-Guerrero I, Pérez-Montaño F, Medina C, Ollero FJ, López-Baena FJ. NopC is a rhizobium-specific type 3 secretion system effector secreted by Sinorhizobium (Ensifer) fredii HH103. PLoS One 2015; 10:e0142866 [View Article][PubMed]
    [Google Scholar]
  63. Büttner D, Nennstiel D, Klüsener B, Bonas U. Functional analysis of HrpF, a putative type III translocon protein from Xanthomonas campestris pv. vesicatoria . J Bacteriol 2002; 184:2389–2398 [View Article][PubMed]
    [Google Scholar]
  64. Marie C, Deakin WJ, Ojanen-Reuhs T, Diallo E, Reuhs B et al. TtsI, a key regulator of Rhizobium species NGR234 is required for type III-dependent protein secretion and synthesis of rhamnose-rich polysaccharides. Mol Plant Microbe Interact 2004; 17:958–966 [View Article][PubMed]
    [Google Scholar]
  65. Helene LCF, Delamuta JRM, Ribeiro RA, Hungria M. Bradyrhizobium mercantei sp. nov., a nitrogen-fixing symbiont isolated from nodules of Deguelia costata (syn. Lonchocarpus costatus). Int J Syst Evol Microbiol 2017; 67:1827–1834 [View Article][PubMed]
    [Google Scholar]
  66. Ribeiro RA, Helene LCF, Delamuta JRM, Hungria M. Genome sequence of Bradyrhizobium mercantei strain SEMIA6399T, isolated from nodules of Deguelia costata in Brazil. Genome Announc 2017; 5:e00943–17 [View Article][PubMed]
    [Google Scholar]
  67. Ji H, Dong H. Key steps in type III secretion system (T3SS) towards translocon assembly with potential sensor at plant plasma membrane. Mol Plant Pathol 2015; 16:762–773 [View Article][PubMed]
    [Google Scholar]
  68. Saad MM, Staehelin C, Broughton WJ, Deakin WJ. Protein-protein interactions within type III secretion system-dependent pili of Rhizobium sp. strain NGR234. J Bacteriol 2008; 190:750–754 [View Article][PubMed]
    [Google Scholar]
  69. Pesce C, Jacobs JM, Berthelot E, Perret M, Vancheva T et al. Comparative genomics identifies a novel conserved protein, HpaT, in proteobacterial type III secretion systems that do not possess the putative translocon protein HrpF. Front Microbiol 2017; 8:1177 [View Article][PubMed]
    [Google Scholar]
  70. Wenzel M, Friedrich L, Göttfert M, Zehner S. The type III-secreted protein NopE1 affects symbiosis and exhibits a calcium-dependent autocleavage activity. Mol Plant Microbe Interact 2010; 23:124–129 [View Article][PubMed]
    [Google Scholar]
  71. Büttner D, Bonas U. Port of entry--the type III secretion translocon. Trends Microbiol 2002; 10:186–192 [View Article][PubMed]
    [Google Scholar]
  72. Kambara K, Ardissone S, Kobayashi H, Saad MM, Schumpp O et al. Rhizobia utilize pathogen-like effector proteins during symbiosis. Mol Microbiol 2009; 71:92–106 [View Article][PubMed]
    [Google Scholar]
  73. Dean P. Functional domains and motifs of bacterial type III effector proteins and their roles in infection. FEMS Microbiol Rev 2011; 35:1100–1125 [View Article][PubMed]
    [Google Scholar]
  74. Gomez-Valero L, Rusniok C, Carson D, Mondino S, Pérez-Cobas AE et al. More than 18 000 effectors in the Legionella genus genome provide multiple, independent combinations for replication in human cells. Proc Natl Acad Sci USA 2019; 116:2265–2273 [View Article][PubMed]
    [Google Scholar]
  75. Xin D-W, Liao S, Xie Z-P, Hann DR, Steinle L et al. Functional analysis of NopM, a novel E3 ubiquitin ligase (Nel) domain effector of Rhizobium sp. strain NGR234. PLoS Pathog 2012; 8:e1002707 [View Article][PubMed]
    [Google Scholar]
  76. Xu C-C, Zhang D, Hann DR, Xie Z-P, Staehelin C. Biochemical properties and in planta effects of NopM, a rhizobial E3 ubiquitin ligase. J Biol Chem 2018; 293:15304–15315 [View Article][PubMed]
    [Google Scholar]
  77. Rodrigues JA, López-Baena FJ, Ollero FJ, Vinardell JM, Espuny MDR et al. NopM and NopD are rhizobial nodulation outer proteins: identification using LC-MALDI and LC-ESI with a monolithic capillary column. J Proteome Res 2007; 6:1029–1037 [View Article][PubMed]
    [Google Scholar]
  78. Faruque OM, Miwa H, Yasuda M, Fujii Y, Kaneko T et al. Identification of Bradyrhizobium elkanii genes involved in incompatibility with soybean plants carrying the Rj4 allele. Appl Environ Microbiol 2015; 81:6710–6717 [View Article][PubMed]
    [Google Scholar]
  79. Dai W-J, Zeng Y, Xie Z-P, Staehelin C. Symbiosis-promoting and deleterious effects of NopT, a novel type 3 effector of Rhizobium sp. strain NGR234. J Bacteriol 2008; 190:5101–5110 [View Article][PubMed]
    [Google Scholar]
  80. Fotiadis CT, Dimou M, Georgakopoulos DG, Katinakis P, Tampakaki AP. Functional characterization of NopT1 and NopT2, two type III effectors of Bradyrhizobium japonicum . FEMS Microbiol Lett 2012; 327:66–77 [View Article][PubMed]
    [Google Scholar]
  81. Hoyer E, Knöppel J, Liebmann M, Steppert M, Raiwa M et al. Calcium binding to a disordered domain of a type III-secreted protein from a coral pathogen promotes secondary structure formation and catalytic activity. Sci Rep 2019; 9:7115 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000407
Loading
/content/journal/mgen/10.1099/mgen.0.000407
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error