Skip to main content
Log in

In Silico Study of the Structure and Ligand Interactions of Alcohol Dehydrogenase from Cyanobacterium Synechocystis Sp. PCC 6803 as a Key Enzyme for Biofuel Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Alcohol dehydrogenase is one of the most critical enzymes in the production of ethanol and butanol. Synechocystis sp. PCC 6803 is a model cyanobacterium organism that is able to produce alcohols through its autotrophic energy production system. In spite of the high potential for biofuel production by this bacteria, the structure of its alcohol dehydrogenase has not been subjected to in-depth studies. The current study was aimed to analyze the molecular model for alcohol dehydrogenase of Synechocystis sp. PCC 6803 and scrutinize the interactions of different chemicals, including substrates and coenzymes. Also, the phylogenetic tree was provided to investigate the relation between different sources. The results indicated that alcohol dehydrogenase of Synechocystis sp. PCC 6803 has a different sequence compared with other Alcohol dehydrogenases (ADHs) of cyanobacterial family members. Verification of the homology model using Ramachandran plot by PROCHECK indicated that all of the residues are in favored or allowed regions of the plot. This enzyme has two Zn ions in its structure which is very similar to the other Zn-dependent ADHs. Docking studies suggest that this enzyme could have more active sites for different substrates. In addition, this enzyme has more affinity to NADH as a cofactor and sinapaldehyde as a substrate compared with the other cofactor and substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Khanna, N., Raleiras, P., & Lindblad, P. (2016). Fundamentals and recent advances in hydrogen production and nitrogen fixation in cyanobacteria. The Physiology of Microalgae (pp. 101–127). Springer.

  2. Corma, A., & Garcia, H. (2013). Photocatalytic reduction of CO2 for fuel production: possibilities and challenges. Journal of Catalysis., 308, 168–175.

    CAS  Google Scholar 

  3. Connor, M. R., & Atsumi, S. (2010). Synthetic biology guides biofuel production. BioMed Research International., 2010.

  4. Berla, B. M., Saha, R., Immethun, C. M., Maranas, C. D., Moon, T. S., & Pakrasi, H. (2013). Synthetic biology of cyanobacteria: unique challenges and opportunities. Frontiers in Microbiology., 4, 246.

    Google Scholar 

  5. Singh, V., Chaudhary, D. K., Mani, I., & Dhar, P. K. (2016). Recent advances and challenges of the use of cyanobacteria towards the production of biofuels. Renewable and Sustainable Energy Reviews., 60, 1–10.

    Google Scholar 

  6. Nozzi, N. E., Oliver, J. W., & Atsumi, S. (2013). Cyanobacteria as a platform for biofuel production. Frontiers in Bioengineering and Biotechnology., 1, 7.

    Google Scholar 

  7. Zavřel, T., Sinetova, M. A., Búzová, D., Literáková, P., & Červený, J. (2015). Characterization of a model cyanobacterium Synechocystis sp. PCC 6803 autotrophic growth in a flat-panel photobioreactor. Engineering in Life Sciences., 15(1), 122–132.

    Google Scholar 

  8. Peng, L., Lan, F., & Lan, C. Q. (2020). Biofuels from microalgae and seaweeds: Potentials of industrial scale production. Green Energy to Sustainability: Strategies for Global Industries.

  9. Mohammadi, R., Fallah-Mehrabadi, J., Bidkhori, G., Zahiri, J., Niroomand, M. J., & Masoudi-Nejad, A. (2016). A systems biology approach to reconcile metabolic network models with application to Synechocystis sp. PCC 6803 for biofuel production. Molecular BioSystems., 12(8), 2552–2561.

    CAS  Google Scholar 

  10. Umasankar, Y., Adhikari, B.-R., & Chen, A. (2017). Effective immobilization of alcohol dehydrogenase on carbon nanoscaffolds for ethanol biofuel cell. Bioelectrochemistry., 118, 83–90.

    CAS  Google Scholar 

  11. Zheng, Y.-G., Yin, H.-H., Yu, D.-F., Chen, X., Tang, X.-L., Zhang, X.-J., Xue, Y. P., Wang, Y. J., & Liu, Z. Q. (2017). Recent advances in biotechnological applications of alcohol dehydrogenases. Applied Microbiology and Biotechnology., 101(3), 987–1001.

    CAS  Google Scholar 

  12. Gao, Z., Zhao, H., Li, Z., Tan, X., & Lu, X. (2012). Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria. Energy & Environmental Science., 5(12), 9857–9865.

    CAS  Google Scholar 

  13. Jurgens, G., Survase, S., Berezina, O., Sklavounos, E., Linnekoski, J., Kurkijärvi, A., Väkevä, M., van Heiningen, A., & Granström, T. (2012). Butanol production from lignocellulosics. Biotechnology Letters, 34(8), 1415–1434.

    CAS  Google Scholar 

  14. Lee, Y.-G., & Seo, J.-H. (2019). Production of 2, 3-butanediol from glucose and cassava hydrolysates by metabolically engineered industrial polyploid Saccharomyces cerevisiae. Biotechnology for Biofuels, 12(1), 204.

    Google Scholar 

  15. Brown, S. D., Guss, A. M., Karpinets, T. V., Parks, J. M., Smolin, N., Yang, S., Land, M. L., Klingeman, D. M., Bhandiwad, A., Rodriguez, M., Raman, B., Shao, X., Mielenz, J. R., Smith, J. C., Keller, M., & Lynd, L. R. (2011). Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum. Proceedings of the National Academy of Sciences., 108(33), 13752–13757.

    CAS  Google Scholar 

  16. Ratautas, D., Tetianec, L., Marcinkevičienė, L., Meškys, R., & Kulys, J. (2017). Bioanode with alcohol dehydrogenase undergoing a direct electron transfer on functionalized gold nanoparticles for an application in biofuel cells for glycerol conversion. Biosensors and Bioelectronics., 98, 215–221.

    CAS  Google Scholar 

  17. Liu, X., Miao, R., Lindberg, P., & Lindblad, P. (2019). Modular engineering for efficient photosynthetic biosynthesis of 1-butanol from CO2 in cyanobacteria. Energy & Environmental Science., 12(9), 2765–2777.

    Google Scholar 

  18. Zheng, T., Olson, D. G., Murphy, S. J., Shao, X., Tian, L., & Lynd, L. R. (2017). Both adhE and a separate NADPH-dependent alcohol dehydrogenase gene, adhA, are necessary for high ethanol production in Thermoanaerobacterium saccharolyticum. Journal of Bacteriology, 199(3).

  19. Cho, C., Hong, S., Moon, H. G., Jang, Y.-S., Kim, D., & Lee, S. Y. (2019). Engineering clostridial aldehyde/alcohol dehydrogenase for selective butanol production. MBio, 10(1).

  20. Vidal, L. S., Kelly, C. L., Mordaka, P. M., & Heap, J. T. (2018). Review of NAD (P) H-dependent o`xidoreductases: properties, engineering and application. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics., 1866(2), 327–347.

    Google Scholar 

  21. Vidal, R., López-Maury, L., Guerrero, M. G., & Florencio, F. J. (2009). Characterization of an alcohol dehydrogenase from the Cyanobacterium Synechocystis sp. strain PCC 6803 that responds to environmental stress conditions via the Hik34-Rre1 two-component system. Journal of Bacteriology., 191(13), 4383–4391.

    CAS  Google Scholar 

  22. Reeb, J., Goldberg, T., Ofran, Y., & Rost, B. (2020). Predictive methods using protein sequences. Bioinformatics., 185.

  23. Charleston M. Phylogeny. In Brenner’s encyclopedia of genetics: Second edition: Elsevier Inc; 2013.

    Google Scholar 

  24. Choudhuri, S. (2014). Phylogenetic analysis. Bioinformatics for Beginners: Elsevier BV, 209–218.

  25. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology., 215(3), 403–410.

    CAS  Google Scholar 

  26. Madeira, F., Park, Y. M., Lee, J., Buso, N., Gur, T., Madhusoodanan, N., et al. (2019). The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Research., 47(W1), W636–WW41.

    CAS  Google Scholar 

  27. Webb, B., & Sali, A. (2016). Comparative protein structure modeling using MODELLER. Current Protocols in Bioinformatics, 54(1), 5.6. 1–5.6. 37.

    Google Scholar 

  28. Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(suppl_2), W407–WW10.

    Google Scholar 

  29. Laskowski, R. A., Jabłońska, J., Pravda, L., Vařeková, R. S., & Thornton, J. M. (2018). PDBsum: structural summaries of PDB entries. Protein Science., 27(1), 129–134.

    CAS  Google Scholar 

  30. Eisenberg, D., Lüthy, R., & Bowie, J. U. (1997). [20] VERIFY3D: assessment of protein models with three-dimensional profiles. Methods in Enzymology, 277: Elsevier, 396–404.

    CAS  Google Scholar 

  31. Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: a program to check the stereochemical quality of protein structures. Journal of applied crystallography., 26(2), 283–291.

    CAS  Google Scholar 

  32. Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Research., 46(W1), W296–W303.

    CAS  Google Scholar 

  33. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612.

    CAS  Google Scholar 

  34. Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791.

    CAS  Google Scholar 

  35. Trott, O., & Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461.

    CAS  Google Scholar 

  36. Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549.

    CAS  Google Scholar 

  37. Hillis, D. M., & Bull, J. J. (1993). An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology, 42(2), 182–192.

    Google Scholar 

  38. Soltis, P. S., & Soltis, D. E. (2003). Applying the bootstrap in phylogeny reconstruction. Statistical Science., 18(2), 256–267.

    Google Scholar 

  39. Netravali, A. N., & Chabba, S. (2003). Composites get greener. Materials Today, 4(6), 22–29.

    Google Scholar 

  40. Brysse, K., Oreskes, N., O’Reilly, J., & Oppenheimer, M. (2013). Climate change prediction: Erring on the side of least drama? Global Environmental Change., 23(1), 327–337.

    Google Scholar 

  41. Zhu, C., Zhang, G., Lu, P., Meng, L., & Ji, X. (2015). Benchmark modeling of the Sleipner CO2 plume: calibration to seismic data for the uppermost layer and model sensitivity analysis. International Journal of Greenhouse Gas Control., 43, 233–246.

    Google Scholar 

  42. Abomohra, A. E.-F., Jin, W., Tu, R., Han, S.-F., Eid, M., & Eladel, H. (2016). Microalgal biomass production as a sustainable feedstock for biodiesel: current status and perspectives. Renewable and Sustainable Energy Reviews., 64, 596–606.

    CAS  Google Scholar 

  43. Acevedo, J. C., Hernández, J. A., Valdés, C. F., & Khanal, S. K. (2015). Analysis of operating costs for producing biodiesel from palm oil at pilot-scale in Colombia. Bioresource Technology., 188, 117–123.

    CAS  Google Scholar 

  44. Srinivasan, S. (2009). The food v. fuel debate: a nuanced view of incentive structures. Renewable Energy, 34(4), 950–954.

    Google Scholar 

  45. Pinzi, S., Leiva, D., López-García, I., Redel-Macías, M. D., & Dorado, M. P. (2014). Latest trends in feedstocks for biodiesel production. Biofuels, Bioproducts and Biorefining., 8(1), 126–143.

    CAS  Google Scholar 

  46. Rittmann, B. E., Krajmalnik-Brown, R., & Halden, R. U. (2008). Pre-genomic, genomic and post-genomic study of microbial communities involved in bioenergy. Nature Reviews Microbiology., 6(8), 604–612.

    CAS  Google Scholar 

  47. Kurek I, Reed JS, Fyrst H, Jansson C, Galgoczy D. Engineered CO2-fixing chemotrophic microorganisms producing carbon-based products and methods of using the same. Google Patents; 2018.

    Google Scholar 

  48. An, J., Nie, Y., & Xu, Y. (2019). Structural insights into alcohol dehydrogenases catalyzing asymmetric reductions. Critical Reviews in Biotechnology, 39(3), 366–379.

    CAS  Google Scholar 

  49. Nordling, E., Jörnvall, H., & Persson, B. (2002). Medium-chain dehydrogenases/reductases (MDR) family characterizations including genome comparisons and active site modelling. European Journal of Biochemistry., 269(17), 4267–4276.

    CAS  Google Scholar 

  50. Riveros-Rosas, H., Julián-Sánchez, A., Villalobos-Molina, R., Pardo, J. P., & Piña, E. (2003). Diversity, taxonomy and evolution of medium-chain dehydrogenase/reductase superfamily. European Journal Of Biochemistry., 270(16), 3309–3334.

    CAS  Google Scholar 

  51. Boudet, A.-M. (2007). Evolution and current status of research in phenolic compounds. Phytochemistry., 68(22–24), 2722–2735.

    CAS  Google Scholar 

  52. Kim, S.-J., Kim, K.-W., Cho, M.-H., Franceschi, V. R., Davin, L. B., & Lewis, N. G. (2007). Expression of cinnamyl alcohol dehydrogenases and their putative homologues during Arabidopsis thaliana growth and development: Lessons for database annotations? Phytochemistry., 68(14), 1957–1974.

    CAS  Google Scholar 

  53. Mikami, K., Kanesaki, Y., Suzuki, I., & Murata, N. (2002). The histidine kinase Hik33 perceives osmotic stress and cold stress in Synechocystis sp. PCC 6803. Molecular Microbiology., 46(4), 905–915.

    CAS  Google Scholar 

  54. Shoumskaya, M. A., Paithoonrangsarid, K., Kanesaki, Y., Los, D. A., Zinchenko, V. V., Tanticharoen, M., Suzuki, I., & Murata, N. (2005). Identical Hik-Rre systems are involved in perception and transduction of salt signals and hyperosmotic signals but regulate the expression of individual genes to different extents in Synechocystis. Journal of Biological Chemistry., 280(22), 21531–21538.

    CAS  Google Scholar 

  55. Jun, S.-Y., Walker, A. M., Kim, H., Ralph, J., Vermerris, W., Sattler, S. E., & Kang, C. H. (2017). The enzyme activity and substrate specificity of two major cinnamyl alcohol dehydrogenases in sorghum (Sorghum bicolor), SbCAD2 and SbCAD4. Plant Physiology, 174(4), 2128–2145.

    CAS  Google Scholar 

  56. Kang, C., Hayes, R., Sanchez, E. J., Webb, B. N., Li, Q., Hooper, T., Nissen, M. S., & Xun, L. (2012). Furfural reduction mechanism of a zinc-dependent alcohol dehydrogenase from Cupriavidus necator JMP134. Molecular Microbiology., 83(1), 85–95.

    CAS  Google Scholar 

  57. Cooley, J. W., & Vermaas, W. F. (2001). Succinate dehydrogenase and other respiratory pathways in thylakoid membranes of Synechocystis sp. strain PCC 6803: capacity comparisons and physiological function. Journal of Bacteriology., 183(14), 4251–4258.

    CAS  Google Scholar 

  58. Vidal, R. (2017). Alcohol dehydrogenase AdhA plays a role in ethanol tolerance in model cyanobacterium Synechocystis sp. PCC 6803. Applied Microbiology and Biotechnology., 101(8), 3473–3482.

    CAS  Google Scholar 

  59. Sengupta, A., Sunder, A. V., Sohoni, S. V., & Wangikar, P. P. (2019). The effect of CO2 in enhancing photosynthetic cofactor recycling for alcohol dehydrogenase mediated chiral synthesis in cyanobacteria. Journal of Biotechnology., 289, 1–6.

    CAS  Google Scholar 

  60. Park, J., & Choi, Y. (2017). Cofactor engineering in cyanobacteria to overcome imbalance between NADPH and NADH: a mini review. Frontiers of Chemical Science and Engineering., 11(1), 66–71.

    CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank the University of Isfahan for their support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Omid Haghighi or Mohammad Moradi.

Ethics declarations

Conflict of Interests

The authors declare no conflict of interests.

Research Involving Human Participants and/or Animals

No human or animal was involved in this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 119 kb)

ESM 2

(DOCX 14 kb)

ESM 3

(DOCX 14.8 kb)

ESM 4

(PDB 301 kb)

ESM 5

(PDB 195 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haghighi, O., Moradi, M. In Silico Study of the Structure and Ligand Interactions of Alcohol Dehydrogenase from Cyanobacterium Synechocystis Sp. PCC 6803 as a Key Enzyme for Biofuel Production. Appl Biochem Biotechnol 192, 1346–1367 (2020). https://doi.org/10.1007/s12010-020-03400-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03400-z

Keywords

Navigation