Skip to main content
Log in

The progression of serum cystatin C concentrations within the first month of life after preterm birth—a worldwide systematic review

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Multiple single-center studies have examined the progression of kidney function biomarkers such as serum cystatin C (Cys C) in the first 30 days of life (DOL) after preterm birth, but from different ethnicities and in different gestational ages (GA), without a functional summary available. We performed a systematic literature review within PubMed, Google Scholar, and Scopus, with additional use of the snowballing method to find studies including data on serum Cys C concentrations in the first 30 DOL. We identified 15 papers that met criteria, published from 2000 to 2019, from 10 countries across 4 continents, in 1468 babies born preterm. Cys C was superior to creatinine in 11/13 studies, and equal in 2/13. For infants born at 24–28 weeks GA, the DOL1 Cys C concentrations ranged from 1.44 to 1.90 mg/L, from 1.20 to 1.77 on DOL3, and from 1.36 to 2.02 between DOL 4 and 30. For infants born at 29–33 weeks GA, the DOL1 Cys C values ranged from 1.41 to 1.96 mg/L, from 1.28 to 1.70 on DOL3, and 1.51 to 1.87 between DOL 4 and 30. For preterm infants born after 34 weeks GA, the DOL1 Cys C values ranged from 1.22 to 1.96 mg/L, from 1.24 to 1.85 on DOL3, and 1.22 to 1.82 between DOL 4 and 30. This systematic review provides generalizable worldwide reference data on Cys C that could be used to estimate progression or resolution of abnormal kidney function in the first months after preterm birth, stratified by GA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abitbol CL, Rodriguez MM (2012) The long-term renal and cardiovascular consequences of prematurity. Nat Rev Nephrol 8:265–274

    Article  CAS  PubMed  Google Scholar 

  2. Nakashima T, Inoue H, Fujiyoshi J, Matsumoto N (2016) Longitudinal analysis of serum cystatin C for estimating the glomerular filtration rate in preterm infants. Pediatr Nephrol 31:983–989

    Article  PubMed  Google Scholar 

  3. Demirel G, Celik IH, Canpolat FE, Erdeve O, Biyikli Z, Dilmen U (2013) Reference values of serum cystatin C in very low-birthweight premature infants. Acta Paediatr 102:e4–e7

    Article  CAS  PubMed  Google Scholar 

  4. Armangil D, Yurdakok M, Canpolat FE, Korkmaz A, Yigit S, Tekinalp G (2008) Determination of reference values for plasma cystatin C and comparison with creatinine in premature infants. Pediatr Nephrol 23:2081–2083

    Article  PubMed  Google Scholar 

  5. Finney H, Newman DJ, Thakkar H, Fell JM, Price CP (2000) Reference ranges for plasma cystatin C and creatinine measurements in premature infants, neonates, and older children. Arch Dis Child 82:71–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Harmoinen A, Ylinen E, Ala-Houhala M, Janas M, Kaila M, Kouri T (2000) Reference intervals for cystatin C in pre- and full-term infants and children. Pediatr Nephrol 15:105–108

    Article  CAS  PubMed  Google Scholar 

  7. Dharnidharka VR, Kwon C, Stevens G (2002) Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis. Am J Kidney Dis 40:221–226

    Article  CAS  PubMed  Google Scholar 

  8. Fliser D, Ritz E (2001) Serum cystatin C concentration as a marker of renal dysfunction in the elderly. Am J Kidney Dis 37:79–83

    Article  CAS  PubMed  Google Scholar 

  9. Ylinen EA, Ala-Houhala M, Harmoinen AP, Knip M (1999) Cystatin C as a marker for glomerular filtration rate in pediatric patients. Pediatr Nephrol 13:506–509

    Article  CAS  PubMed  Google Scholar 

  10. Bokenkamp A, Dieterich C, Dressler F, Muhlhaus K, Gembruch U, Bald R, Kirschstein M (2001) Fetal serum concentrations of cystatin C and beta2-microglobulin as predictors of postnatal kidney function. Am J Obstet Gynecol 185:468–475

    Article  CAS  PubMed  Google Scholar 

  11. Cataldi L, Mussap M, Bertelli L, Ruzzante N, Fanos V, Plebani M (1999) Cystatin C in healthy women at term pregnancy and in their infant newborns: relationship between maternal and neonatal serum levels and reference values. Am J Perinatol 16:287–295

    Article  CAS  PubMed  Google Scholar 

  12. Bahar A, Yilmaz Y, Unver S, Gocmen I, Karademir F (2003) Reference values of umbilical cord and third-day cystatin C levels for determining glomerular filtration rates in newborns. J Int Med Res 31:231–235

    Article  CAS  PubMed  Google Scholar 

  13. Greenhalgh T, Peacock R (2005) Effectiveness and efficiency of search methods in systematic reviews of complex evidence: audit of primary sources. BMJ 331:1064–1065

  14. Abitbol CL, Seeherunvong W, Galarza MG, Katsoufis C, Francoeur D, Defreitas M, Edwards-Richards A, Master Sankar Raj V, Chandar J, Duara S, Yasin S, Zilleruelo G (2014) Neonatal kidney size and function in preterm infants: what is a true estimate of glomerular filtration rate? J Pediatr 164:1026–1031 e1022

    Article  PubMed  Google Scholar 

  15. Bariciak E, Yasin A, Harrold J, Walker M, Lepage N, Filler G (2011) Preliminary reference intervals for cystatin C and beta-trace protein in preterm and term neonates. Clin Biochem 44:1156–1159

    Article  CAS  PubMed  Google Scholar 

  16. Dorum S, Silfeler I, Dorum BA, Silfeler DB, Canbak Y, Say A (2012) Reference values of serum cystatin-C for full-term and preterm neonates in Istanbul. Indian J Pediatr 79:1037–1042

    Article  PubMed  Google Scholar 

  17. Elmas AT, Tabel Y, Elmas ON (2013) Reference intervals of serum cystatin C for determining cystatin C-based glomerular filtration rates in preterm neonates. J Matern Fetal Neonatal Med 26:1474–1478

    Article  CAS  PubMed  Google Scholar 

  18. Garg P, Hidalgo G (2017) Glomerular filtration rate estimation by serum creatinine or serum cystatin C in preterm (<31 weeks) neonates. Indian Pediatr 54:508–509

    PubMed  Google Scholar 

  19. Kandasamy Y, Smith R, Wright IM (2013) Measuring cystatin C to determine renal function in neonates. Pediatr Crit Care Med 14:318–322

    Article  PubMed  Google Scholar 

  20. Lee JH, Hahn WH, Ahn J, Chang JY, Bae CW (2013) Serum cystatin C during 30 postnatal days is dependent on the postconceptional age in neonates. Pediatr Nephrol 28:1073–1078

    Article  PubMed  Google Scholar 

  21. Yang Y, Li SJ, Pan JJ, Hu YH, Zhou XY, Cheng R, Chen XQ (2018) Reference values for serum cystatin C in very low-birthweight infants: from two centres of China. J Paediatr Child Health 54:284–288

    Article  PubMed  Google Scholar 

  22. Bardallo Cruzado L, Perez Gonzalez E, Martinez Martos Z, Bermudo Guitarte C, Granero Asencio M, Luna Lagares S, Marin Paton M, Polo Padilla J (2015) Serum cystatin C levels in preterm newborns in our setting: correlation with serum creatinine and preterm pathologies. Nefrologia 35:296–303

    Article  PubMed  Google Scholar 

  23. Kandasamy Y, Rudd D, Smith R (2017) The relationship between body weight, cystatin C and serum creatinine in neonates. J Neonatal Perinatal Med 10:419–423

    Article  CAS  PubMed  Google Scholar 

  24. Abitbol CL, DeFreitas MJ, Strauss J (2016) Assessment of kidney function in preterm infants: lifelong implications. Pediatr Nephrol 31:2213–2222

    Article  PubMed  Google Scholar 

  25. Bueva A, Guignard JP (1994) Renal function in preterm neonates. Pediatr Res 36:572–577

    Article  CAS  PubMed  Google Scholar 

  26. Gubhaju L, Sutherland MR, Horne RS, Medhurst A, Kent AL, Ramsden A, Moore L, Singh G, Hoy WE, Black MJ (2014) Assessment of renal functional maturation and injury in preterm neonates during the first month of life. Am J Physiol Renal Physiol 307:F149–F158

    Article  CAS  PubMed  Google Scholar 

  27. Guignard JP, Drukker A (1999) Why do newborn infants have a high plasma creatinine? Pediatrics 103:e49

    Article  CAS  PubMed  Google Scholar 

  28. Montini G, Cosmo L, Amici G, Mussap M, Zacchello G (2001) Plasma cystatin C values and inulin clearances in premature neonates. Pediatr Nephrol 16:463–465

    Article  CAS  PubMed  Google Scholar 

  29. Schwartz GJ, Schneider MF, Maier PS, Moxey-Mims M, Dharnidharka VR, Warady BA, Furth SL, Munoz A (2012) Improved equations estimating GFR in children with chronic kidney disease using an immunonephelometric determination of cystatin C. Kidney Int 82:445–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zappitelli M, Parvex P, Joseph L, Paradis G, Grey V, Lau S, Bell L (2006) Derivation and validation of cystatin C-based prediction equations for GFR in children. Am J Kidney Dis 48:221–230

    Article  CAS  PubMed  Google Scholar 

  31. Selewski DT, Hyatt DM, Bennett KM, Charlton JR (2018) Is acute kidney injury a harbinger for chronic kidney disease? Curr Opin Pediatr 30:236–240

    Article  PubMed  PubMed Central  Google Scholar 

  32. Shalaby MA, Sawan ZA, Nawawi E, Alsaedi S, Al-Wassia H, Kari JA (2018) Incidence, risk factors, and outcome of neonatal acute kidney injury: a prospective cohort study. Pediatr Nephrol 33:1617–1624

    Article  PubMed  Google Scholar 

  33. Stritzke A, Thomas S, Amin H, Fusch C, Lodha A (2017) Renal consequences of preterm birth. Mol Cell Pediatr 4:2

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zaffanello M, Franchini M, Fanos V (2007) Is serum cystatin-C a suitable marker of renal function in children? Ann Clin Lab Sci 37:233–240

    CAS  PubMed  Google Scholar 

  35. Nakhjavan-Shahraki B, Yousefifard M, Ataei N, Baikpour M, Ataei F, Bazargani B, Abbasi A, Ghelichkhani P, Javidilarijani F, Hosseini M (2017) Accuracy of cystatin C in prediction of acute kidney injury in children; serum or urine levels: which one works better? A systematic review and meta-analysis. BMC Nephrol 18:120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Allegaert K, Mekahli D, van den Anker J (2015) Cystatin C in newborns: a promising renal biomarker in search for standardization and validation. J Matern Fetal Neonatal Med 28:1833–1838

    Article  PubMed  Google Scholar 

  37. Grubb A, Blirup-Jensen S, Lindstrom V, Schmidt C, Althaus H, Zegers I; IFCC Working Group on Standardisation of Cystatin C (WG-SCC) (2010) First certified reference material for cystatin C in human serum ERM-DA471/IFCC. Clin Chem Lab Med 48:1619–1621

  38. Ebert N, Delanaye P, Shlipak M, Jakob O, Martus P, Bartel J, Gaedeke J, van der Giet M, Schuchardt M, Cavalier E, Schaeffner E (2016) Cystatin C standardization decreases assay variation and improves assessment of glomerular filtration rate. Clin Chim Acta 456:115–121

    Article  CAS  PubMed  Google Scholar 

  39. Bargnoux AS, Piéroni L, Cristol JP, Kuster N, Delanaye P, Carlier MC, Fellahi S, Boutten A, Lombard C,  González-Antuña A, Delatour V, Cavalier E; Société Française de Biologie Clinique (SFBC) (2017) Multicenter evaluation of cystatin C measurement after assay standardization. Clin Chem 63:833–841

  40. Eckfeldt JH, Karger AB, Miller WG, Rynders GP, Inker LA (2015) Performance in measurement of serum cystatin C by laboratories participating in the College of American Pathologists 2014 CYS survey. Arch Pathol Lab Med 139:888–893

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

PIT is a member of the Scientific Advisory Board of, and a consultant to, MediBeacon Inc., and a potential recipient of royalty income from a patent assigned to MediBeacon. These efforts relate to MediBeacon’s work on a test for intestinal permeability and not to their technology relevant to determining glomerular filtration rates. He is also a consultant to Takeda Pharmaceuticals in the topic area of childhood intestinal disorders.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas R. Dharnidharka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Renganathan, A., Warner, B.B., Tarr, P.I. et al. The progression of serum cystatin C concentrations within the first month of life after preterm birth—a worldwide systematic review. Pediatr Nephrol 36, 1709–1718 (2021). https://doi.org/10.1007/s00467-020-04543-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-020-04543-1

Keywords

Navigation