Skip to main content
Log in

Understanding Nanomedicine Size and Biological Response Dependency: What Is the Relevance of Previous Relationships Established on Only Batch-Mode DLS-Measured Sizes?

  • RESEARCH PAPER
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Most relationships between size and nanomedicine performance and safety were established before the early 2010s’ when batch-mode dynamic light scattering (batch-mode DLS) was the only easy size measurement method for colloids available. They are basis for the rational design of nanomedicines, but misunderstood contrasting results are reported. This work aimed to investigate whether these relationships can be used with confidence knowing that batch-mode DLS can be tricky when measuring sizes of polydisperse systems.

Methods

A polydisperse dispersion of polymer nanoparticles ranging from 100 to 465 nm was synthesized. The particles were separated in 4 fractions by successive centrifugations. The capacity of each fraction and parent dispersion to activate the complement system was evaluated by Crossed immuno-electrophoresis.

Results

Each fraction was a population of particles with a distinct size. It showed a different capacity to activate the complement system. Particles of the fractions showing the strongest capacity to activate the complement systems had a different size evaluated by batch-mode DLS then that of the parent particles.

Conclusion

Particles activating the complement system in the parent dispersion were not those that were detected by batch-mode DLS while measuring its size. This work pointed out that previously established relationships between nanomedicine size and their biological response should be taken with caution if sizes were only measured by batch-mode DLS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

DLS:

Dynamic light scattering

C3A50:

Concentration in particles expressed in cm2.mL−1 required to activate 50% of the protein C3 of the complement system in the experimental conditions of the test.

EDTA:

Ethylene diamine tetraacetic acid

EGTA:

Ethylene glycol tetraacetic acid

IBCA:

Isobutylcyanoacrylate

ISO:

International Standard Organization

PdI:

Polydispersity Index

PIBCA:

Poly(isobutylcyanoacrylate)

SDV:

Standard deviation

SOP:

Standard operating conditions

TEM:

Transmission electron microscopy

TRPS:

Tunable resistive pulse sensing

VBS2+ :

Veronal buffer supplemented with calcium (0.15 mM) and magnesium (0.5 mM)

VBS5X:

Veronal buffer concentrated by 5 times.

VBS-EDTA:

Veronal buffer supplemented with EDTA (40 mM)

VBS-EGTA+Mg2+ :

Veronal buffer supplemented with EGTA (10 mM) and magnesium (2.5 mM)

References

  1. Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release. 2015;200:138–57.

    Article  CAS  PubMed  Google Scholar 

  2. Juliano R. The delivery of therapeutic oligonucleotides. Nucleic Acids Res. 2016;44:6518–48.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mura S, Couvreur P. Combining imaging and drug delivery for the treatment of severe diseases. In: Mura S, Couvreur P, editors. Nanotheranostics for personalized medicine. Singapore: World Scientific Publishing Co. Pte. Ltd; 2016. p. 1–6.

    Chapter  Google Scholar 

  4. Hare JI, Lammers T, Ashford MB, Puri S, Storm G, Barry ST. Challenges and strategies in anti-cancer nanomedicine development: an industry perspective. Adv Drug Deliv Rev. 2017;108:25–38.

    Article  CAS  PubMed  Google Scholar 

  5. Lacombe S, Porcel E, Scifoni E. Particle therapy and nanomedicine: state of art and research perspectives. Cancer Nanotechnol. 2017;8:9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Luque-Michel E, Imbuluzqueta E, Sebastián V, Blanco-Prieto MJ. Clinical advances of nanocarrier-based cancer therapy and diagnostics. Expert Opin Drug Deliv. 2017;14:75–92.

    Article  CAS  PubMed  Google Scholar 

  7. Pelaz B, Alexiou C, Alvarez-Puebla R, et al. Diverse applications of Nanomedicine. ACS Nano. 2017;11:2313–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ventola CL. Progress in Nanomedicine: approved and investigational Nanodrugs. P T. 2017;42:742–55.

    PubMed  PubMed Central  Google Scholar 

  9. Cicha I, Chauvierre C, Texier I, Cabella C, Metselaar JM, Szebeni J, et al. From design to the clinic: practical guidelines for translating cardiovascular nanomedicine. Cardiovasc Res. 2018;114:1714–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dormont F, Varna M, Couvreur P. Nanoplumbers: biomaterials to fight cardiovascular diseases. Mater Today. 2018;22:122–43.

    Article  CAS  Google Scholar 

  11. Dormont F, Rouquette M, Mahatsekake C, Gobeaux F, Peramo A, Brusini R, et al. Translation of nanomedicines from lab to industrial scale synthesis: the case of squalene-adenosine nanoparticles. J Control Release. 2019;307:302–14.

    Article  CAS  PubMed  Google Scholar 

  12. Rodríguez-Nogales C, González-Fernández Y, Aldaz A, Couvreur P, Blanco-Prieto MJ. Nanomedicines for pediatric cancers. ACS Nano. 2018;12:7482–96.

    Article  PubMed  CAS  Google Scholar 

  13. Valero L, Alhareth K, Gil S, Lecarpentier E, Tsatsaris V, Mignet N, et al. Nanomedicine as a potential approach to empower the new strategies for the treatment of preeclampsia. Drug Discov Today. 2018;23:1099–107.

    Article  PubMed  Google Scholar 

  14. Couvreur P. Nanomedicine: From where are we coming and where are we going? J Control Release. 2019;311–312:319–321.

  15. Lakkireddy HR, Bazile D. Building the design, translation and development principles of polymeric nanomedicines using the case of clinically advanced poly (lactide (glycolide))-poly (ethylene glycol) nanotechnology as a model: an industrial viewpoint. Adv Drug Deliv Rev. 2016;107:289–332.

    Article  CAS  PubMed  Google Scholar 

  16. Lakkireddy HR, Bazile DV. Nano-carriers for drug routing - towards a new era. J Drug Target. 2019;27:525–41.

    Article  CAS  PubMed  Google Scholar 

  17. Alhareth K, Sancey L, Tsapis N, Mignet N. How should we plan the future of nanomedicine for cancer diagnosis and therapy? Int J Pharm. 2017;532(2):657–9.

    Article  CAS  PubMed  Google Scholar 

  18. Hua S, de Matos MBC, Metselaar JM, Storm G. Current trends and challenges in the clinical translation of Nanoparticulate Nanomedicines: pathways for translational development and commercialization. Front Pharmacol. 2018;9:790.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Wu LP, Wang D, Li Z. Grand challenges in nanomedicine. Mater Sci Eng C. 2020;106:110302.

  20. Grainger DW. Connecting drug delivery reality to smart materials design. Int J Pharm. 2013;454:521–4.

    Article  CAS  PubMed  Google Scholar 

  21. Boverhof DR, Bramante CM, Butala JH, Clancy SF, Lafranconi M, West J, et al. Comparative assessment of nanomaterial definitions and safety evaluation considerations. Regul Toxicol Pharmacol. 2015;73:137–50.

    Article  CAS  PubMed  Google Scholar 

  22. Bremer-Hoffmann S, Halamona-Kensaoui B, Borgos SE. Identifiaction of regulatory needs for nanomedicines. J Interdisciplinary Nanomed. 2018;3:4–15.

    Article  Google Scholar 

  23. Gao X, Lowry GV. Progress towards standardized and validated characterizations for measuring physicochemical properties of manufactured nanomaterials relevant to nano health and safety risks. NanoImpact. 2018;9:14–30.

    Article  CAS  Google Scholar 

  24. Halamoda-Kenzaoui B, Holzwarth U, Roebben G, Bogni A, Bremer-Hoffmann S. Mapping of the available standards against the regulatory needs for nanomedicines. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019;11:e1531.

    Article  PubMed  CAS  Google Scholar 

  25. Caputo F, Clogston J, Calzolai L, Rösslein M, Prina-Mello A. Measuring particle size distribution of nanoparticle enabled medicinal products, the joint view of EUNCL and NCI-NCL. A step by step approach combining orthogonal measurements with increasing complexity. J Control Release. 2019;299:31–43.

    Article  CAS  PubMed  Google Scholar 

  26. Caputo F, Arnould A, Bacia M, Ling WL, Rustique E, Texier I, et al. Measuring particle size distribution by asymmetric flow field flow fractionation: a powerful method for the preclinical characterization of lipid-based nanoparticles. Mol Pharm. 2019;16:756–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Langevin D, Raspaud E, Mariot S, Knyazev A, Stocco A, Salonen A, et al. Towards reproducible measurement of nanoparticle size using dynamic light scattering: important controls and considerations. NanoImpact. 2018;10:161–7.

    Article  Google Scholar 

  28. Gioria S, Caputo F, Urbán P, Manus Maguire C, Bremer-Hoffmann S, Prina-Mello A, et al. Are existing standard methods suitable for the evaluation of nanomedicines: some case studies. Nanomedicine. Nanomedicine (Lond). 2018;13:539–54.

    Article  CAS  PubMed  Google Scholar 

  29. Jain AK, Thareja S. In-vitro and in-vivo characterization of pharmaceutical nanocarriers used for drug delivery. Artif Cells Nanomed Biotechnol. 2019;47:524–39.

    Article  CAS  PubMed  Google Scholar 

  30. Williams A, Varela E, Meehan E, Tribe K. Characterisation of nanoparticulate systems by hydrodynamic chromatography. Int J Pharm. 2002;242:295–9.

    Article  CAS  PubMed  Google Scholar 

  31. Anderson W, Kozak D, Coleman VA, Jämting ÅK, Trau M. A comparative study of submicron particle sizing platforms: accuracy, precision and resolution analysis of polydisperse particle size distributions. J Colloid Interface Sci. 2013;405:322–30.

    Article  CAS  PubMed  Google Scholar 

  32. Contado C. Nanomaterials in consumer products: a challenging analytical problem. Front Chem. 2015;3:48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Gross J, Sayle S, Karow AR, Bakowsky U, Garidel P. Nanoparticle tracking analysis of particle size and concentration detection in suspensions of polymer and protein samples: influence of experimental and data evaluation parameters. Eur J Pharm Biopharm. 2016;104:30–41.

  34. Kestens V, Bozatzidis V, De Temmerman P. Ramaye Y. Roebben G Validation of a particle tracking analysis method for the size determination of nano- and microparticles J Nanopart Res. 2017;19:271.

    PubMed  Google Scholar 

  35. Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, et al. Impact of particle size and Polydispersity index on the clinical applications of Lipidic Nanocarrier systems. Pharmaceutics. 2018;10:57.

    Article  PubMed Central  CAS  Google Scholar 

  36. Rasmussen K, Rauscher H, Mech A, Riego Sintes J, Gilliland D, González M, et al. Physico-chemical properties of manufactured nanomaterials - characterisation and relevant methods. An outlook based on the OECD testing Programme. Regul Toxicol Pharmacol. 2018;92:8–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Willmott GR. Tunable resistive pulse sensing: better size and charge measurements for submicrometer colloids. Anal Chem. 2018;90:2987–95.

    Article  CAS  PubMed  Google Scholar 

  38. Lerche D. Comprehensive characterization of nano- and microparticles by in-situ visualization of particle movement using advanced sedimentation techniques. KONA Powder and Particle Journal. 2019;36:156–86.

    Article  CAS  Google Scholar 

  39. Maguire CM, Rösslein M, Wick P, Prina-Mello A. Characterisation of particles in solution - a perspective on light scattering and comparative technologies. Sci Technol Adv Mater. 2018;19:732–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kestens V, Roebben G, Herrmann J, Jämting A, Coleman V, Minelli C, et al. Challenges in the size analysis of a silica nanoparticle mixture as candidate certified reference material. J Nanopart Res. 2016;18:171.

  41. Langevin D, Lozano O, Salvati A, Kestens V, Monopoli M, Raspaud E, et al. Inter-laboratory comparison of nanoparticle size measurements using dynamic light scattering and differential centrifugal sedimentation. NanoImpact. 2018;10:97–107.

    Article  Google Scholar 

  42. Ruseva V, Lyons M, Powell J, Austin J, Malm A, Corbett J. Capillary dynamic light scattering: continuous hydrodynamic particle size from the nano to the micro-scale. Colloids Surf A Physicochem Eng Asp. 2018;558:505–11.

    Article  CAS  Google Scholar 

  43. Valero L, Alhareth K, Espinoza Romero J, Viricel W, Leblond J, Chissey A, et al. Liposomes as Gene Delivery Vectors for Human Placental Cells. Molecules. 2018;23(5). pii: E1085.

  44. Steinhäusser KG, Sayre PG. Reliability of methods and data for regulatory assessment of nanomaterial risks. NanoImpact. 2017;7:66–74.

    Article  Google Scholar 

  45. ISO 22 412:2008: Particle size analysis – Dynamic light scattering (DLS).

  46. ISO 22412:2017: Particle size analysis – Dynamic light scattering (DLS).

  47. Lamberty A, Franks K, Braun A, Kestens V, Roebben G, Linsinger TPJ. Interlaboratory comparison for the measurement of particle size and zeta potential of silica nanoparticles in an aqueous suspension. J Nanopart Res. 2011;13:7317–29.

    Article  Google Scholar 

  48. Braun A, Kestens V, Franks K, Roebben G, Lamberty A, Linsinger TPJ. A new certified reference material for size analysis of nanoparticles. J Nanopart Res. 2012;14:1021.

    Article  CAS  Google Scholar 

  49. Varenne F, Botton J, Merlet C, Beck-Broichsitter M, Legrand FX, Vauthier C. Standardization and validation of a protocol of size measurements by dynamic light scattering for monodispersed stable nanomaterial characterization. Colloids Surf A Physicochem Eng Asp. 2015;486:124–38.

    Article  CAS  Google Scholar 

  50. Varenne F, Botton J, Merlet C, Hillaireau H, Legrand FX, Barratt G, et al. Size of monodispersed nanomaterials evaluated by dynamic light scattering: protocol validated for measurements of 60 and 203nm diameter nanomaterials is now extended to 100 and 400nm. Int J Pharm. 2016;515:245–53.

    Article  CAS  PubMed  Google Scholar 

  51. Varenne F, Rustique E, Botton J, Coty JB, Lanusse G, Ait Lahcen M, et al. Towards quality assessed characterization of nanomaterial: transfer of validated protocols for size measurement by dynamic light scattering and evaluation of zeta potential by electrophoretic light scattering. Int J Pharm. 2017;528:299–311.

    Article  CAS  PubMed  Google Scholar 

  52. Varenne F, Makky A, Gaucher-Delmas M, Violleau F, Vauthier C. Multimodal dispersion of nanoparticles: a comprehensive evaluation of size distribution with 9 size measurement methods. Pharm Res. 2016;33:1220–34.

    Article  CAS  PubMed  Google Scholar 

  53. Stolnik S, Illum L, Davis SS. Long circulating microparticulate drug carriers. Adv Drug Deliv Rev. 1995;16:195–214.

    Article  CAS  Google Scholar 

  54. Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm. 2008;5:505–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jiang W, Kim BY, Rutka JT, Chan WC. Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol. 2008;3:145–50.

    Article  CAS  PubMed  Google Scholar 

  56. Nel AE, Mädler L, Velegol D, Xia T, Hoek EM, Somasundaran P, et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater. 2009;8:543–57.

    Article  CAS  PubMed  Google Scholar 

  57. Liu H, Liu T, Li L, Hao N, Tan L, Meng X, et al. Size dependent cellular uptake, in vivo fate and light–heat conversion efficiency of gold nanoshells on silica nanorattles. Nanoscale. 2012;4:3523–9.

    Article  CAS  PubMed  Google Scholar 

  58. Moghimi MS, Hunter AC, Andresen DL. Factors controlling nanoparticle pharmacokinetics: an integrated analysis and perspective Annu. Rev Pharmacol Toxicol. 2012;52:481–503.

    Article  CAS  Google Scholar 

  59. Kulkarni SA, Feng SS. Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery. Pharm Res. 2013;30:2512–22.

    Article  CAS  PubMed  Google Scholar 

  60. Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33:941–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gustafson HH, Holt-Casper D, Grainger DW, Ghandehari H. Nanoparticle uptake: the phagocyte problem. Nano Today. 2015;10(4):487–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hoshyar N, Gray S, Han H, Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond). 2016;11:673–92.

    Article  CAS  Google Scholar 

  63. Jin Q, Deng Y, Chen X, Ji J. Rational Design of Cancer Nanomedicine for simultaneous stealth surface and enhanced cellular uptake. ACS Nano. 2019;13:954–77.

    CAS  PubMed  Google Scholar 

  64. Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. PNAS. 2008;105:14265–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gaumet M, Vargas A, Gurny R, Delie F. Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur J Pharm Biopharm. 2008;69:1–9.

    Article  CAS  PubMed  Google Scholar 

  66. Kang B, Okwieka P, Schöttler S, Seifert O, Kontermann RE, Pfizenmaier K, et al. Tailoring the stealth properties of biocompatible polysaccharide nanocontainers. Biomaterials. 2015;49:125–34.

    Article  CAS  PubMed  Google Scholar 

  67. Sun Q, Zhou Z, Qiu N, Shen Y. Rational Design of Cancer Nanomedicine: Nanoproperty integration and synchronization. Adv Mater. 2017;29(14):1606628.

    Article  CAS  Google Scholar 

  68. Leong HS, Butler KS, Brinker CJ, Azzawi M, Conlan S, Dufés C, et al. On the issue of transparency and reproducibility in nanomedicine. Nat Nanotechnol. 2019;14:629–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rabanel JM, Adibnia V, Tehrani SF, Sanche S, Hildgen P, Banquy X, et al. Nanoparticle heterogeneity: an emerging structural parameter influencing particle fate in biological media? Nanoscale. 2019;11:383–406.

    Article  CAS  PubMed  Google Scholar 

  70. Schädlich A, Rose C, Kuntsche J, Caysa H, Mueller T, Göpferich A, et al. How stealthy are PEG-PLA nanoparticles? An NIR in vivo study combined with detailed size measurements. Pharm Res. 2011;28:1995–2007.

    Article  PubMed  CAS  Google Scholar 

  71. Kaasalainen M, Aseyev V, von Haartman E, Karaman DŞ, Mäkilä E, Tenhu H, et al. Size, stability, and porosity of Mesoporous nanoparticles characterized with light scattering. Nanoscale Res Lett. 2017;12:74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Sahin A, Esendagli G, Yerlikaya F, Caban-Toktas S, Yoyen-Ermis D, Horzum U, et al. A small variation in average particle size of PLGA nanoparticles prepared by nanoprecipitation leads to considerable change in nanoparticles' characteristics and efficacy of intracellular delivery. Artif Cells Nanomed Biotechnol. 2017;45:1657–64.

    Article  CAS  PubMed  Google Scholar 

  73. Roda B, Marassi V, Zattoni A, Borghi F, Anand R, Agostoni V, et al. Flow field-flow fractionation and multi-angle light scattering as a powerful tool for the characterization and stability evaluation of drug-loaded metal-organic framework nanoparticles. Anal Bioanal Chem. 2018;410:5245–53.

    Article  CAS  PubMed  Google Scholar 

  74. Trindade IC, Pound-Lana G, Pereira DGS, de Oliveira LAM, Andrade MS, Vilela JMC, et al. Mechanisms of interaction of biodegradable polyester nanocapsules with non-phagocytic cells. Eur J Pharm Sci. 2018;124:89–104.

    Article  CAS  PubMed  Google Scholar 

  75. Ahmed S, Corvis Y, Gahoual R, Euan A, Lai-Kuen R, Couillaud BM, et al. Conception of nanosized hybrid liposome/poloxamer particles to thicken the interior core of liposomes and delay hydrophilic drug delivery. Int J Pharm. 2019;567:118488.

    Article  CAS  PubMed  Google Scholar 

  76. Dobrovolskaia MA, Shurin M, Shvedova AA. Current understanding of interactions between nanoparticles and the immune system. Toxicol Appl Pharmacol. 2016;299:78–89.

    Article  CAS  PubMed  Google Scholar 

  77. Szebeni J, Simberg D, González-Fernández Á, Barenholz Y, Dobrovolskaia MA. Roadmap and strategy for overcoming infusion reactions to nanomedicines. Nat Nanotechnol. 2018;13:1100–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Passirani C, Barratt G, Devissaguet JP, Labarre D. Long-circulating nanoparticles bearing heparin or dextran covalently bound to poly (methyl methacrylate). Pharm Res. 1998;15:1046–50.

    Article  CAS  PubMed  Google Scholar 

  79. Alhareth K, Vauthier C, Bourasset F, Gueutin C, Ponchel G, Moussa F. Pharmacokinetics and tissue biodistribution in rats of doxorubicin loaded poly (isobutylcyanoacrylate) nanoparticles prepared by redox radical emulsion polymerization. Eur J Pharm Biopharm. 2012;81(2):453–7.

    Article  CAS  PubMed  Google Scholar 

  80. Moghimi SM, Simberg D, Skotland T, Yaghmur A, Hunter AC. The interplay between blood proteins, complement, and macrophages on Nanomedicine performance and responses. J Pharmacol Exp Ther. 2019;370:581–92.

    Article  CAS  PubMed  Google Scholar 

  81. Simberg D, Moghimi SM. Complement activation by nanomaterials. In: Bonner JC, Brown JM, editors. Interaction of Nanomaterials with the Immune System, Molecular and Integrative Toxicology, Cham Switzerland: Springer Nature 2020. pp 83–98.

  82. Neun BW, Ilinskaya AN, Dobrovolskaia MA. Analysis of complement activation by nanoparticles. Methods Mol Biol. 1682;2018:149–60.

    Google Scholar 

  83. Vauthier C, Schmidt C, Couvreur P. Measurement of the density of polymeric Nanoparticulate drug carriers by Isopycnic centrifugation. J Nanopart Res. 1999;1:411–8.

    Article  CAS  Google Scholar 

  84. Passirani C, Barratt G, Devissaguet JP, Labarre D. Interactions of nanoparticles bearing heparin or dextran covalently bound to poly (methyl methacrylate) with the complement system. Life Sci. 1998;62:775–85.

    Article  CAS  PubMed  Google Scholar 

  85. Coty JB, Varenne F, Vachon JJ, Vauthier C. Serial multiple crossed immunoelectrophoresis at a microscale: a stamp-sized 2D immunoanalysis of protein C3 activation caused by nanoparticles. Electrophoresis. 2016;37:2401–9.

    Article  CAS  PubMed  Google Scholar 

  86. Coty JB, Eleamen Oliveira E, Vauthier C. Tuning complement activation and pathway through controlled molecular architecture of dextran chains in nanoparticle corona. Int J Pharm. 2017;532:769–78.

    Article  CAS  PubMed  Google Scholar 

  87. Coty JB, Varenne F, Benmalek A, Garsaa O, Le Potier I, Taverna M, et al. Characterization of nanomedicines' surface coverage using molecular probes and capillary electrophoresis. Eur J Pharm Biopharm. 2018;130:48–58.

    Article  CAS  PubMed  Google Scholar 

  88. Coty JB, Noiray M, Vauthier C. Assessment of complement activation by nanoparticles: development of a SPR based method and comparison with current high throughput methods. Pharm Res. 2018;35:129.

    Article  PubMed  CAS  Google Scholar 

  89. Des Prez RM, Bryan CS, Hawiger J, Colley DG. Function of the classical and alternate pathways of human complement in serum treated with ethylene glycol tetraacetic acid and MgCl2-ethylene glycol tetraacetic acid. Infect Immun. 1975;11:1235–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Labarre D, Montdargent B, Carreno MP, Maillet F. Strategy for in vitro evaluation of the interactions between biomaterials and complement system. J Appl Biomater. 1993;4:231–40.

    Article  CAS  Google Scholar 

  91. Hamad I, Al-Hanbali O, Hunter AC, Rutt KJ, Andresen TL, Moghimi SM. Distinct polymer architecture mediates switching of complement activation pathways at the nanosphere-serum interface: implications for stealth nanoparticle engineering. ACS Nano. 2010;4:6629–38.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Vauthier.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eleamen Oliveira, E., Barendji, M. & Vauthier, C. Understanding Nanomedicine Size and Biological Response Dependency: What Is the Relevance of Previous Relationships Established on Only Batch-Mode DLS-Measured Sizes?. Pharm Res 37, 161 (2020). https://doi.org/10.1007/s11095-020-02869-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-020-02869-x

Key words

Navigation