Skip to main content
Log in

Facile preparation of novel Pd nanowire networks on a polyaniline hydrogel for sensitive determination of glucose

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this study, novel Pd nanowire networks (PdNW) grown on three-dimensional polyaniline hydrogel (3D-PANI) were prepared via a facile one-step electrodeposition approach at a constant potential of − 0.2 V and further utilized as an electrochemical sensing material for sensitive determination of glucose in alkaline medium. Compared with the sensor based on Pd nanofilm (PdNF)/3D-PANI prepared by electrodeposition at − 0.9 V, the sensor based on PdNW/3D-PANI presented substantially enhanced electrocatalytic activity towards glucose oxidation, with an excellent sensitivity of 146.6 μA mM−1 cm−2, a linear range from 5.0 to 9800 μM, and a low detection limit of 0.7 μM and was, therefore, demonstrated to be available for the determination of glucose in human serum. These findings are likely attributed to the combination of advantages of both PdNW and 3D-PANI, which outperformed most other Pd-based non-enzymatic glucose sensors reported earlier. Moreover, this non-enzymatic electrochemical sensor based on PdNW/3D-PANI may serve as an alternative tool for the assay of glucose and possibly other biomolecules.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Scognamiglio V, Arduini F. The technology tree in the design of glucose biosensors. TrAC Trends Anal Chem. 2019;120:115642.

    CAS  Google Scholar 

  2. Huang MJ, He DP, Wang MZ, Jiang P. NiMoO4 nanosheet arrays anchored on carbon cloth as 3D open electrode for enzyme-free glucose sensing with improved electrocatalytic activity. Anal Bioanal Chem. 2018;410:7921–9.

    CAS  PubMed  Google Scholar 

  3. Hwang DW, Lee S, Seo M, Chung TD. Recent advances in electrochemical non-enzymatic glucose sensors-a review. Anal Chim Acta. 2018;1033:1–34.

    CAS  PubMed  Google Scholar 

  4. Dhara K, Mahapatra DR. Electrochemical non-enzymatic sensing of glucose using advanced nanomaterials. Microchim Acta. 2018;185:49.

    Google Scholar 

  5. Wu YS, Wu ZW, Lee CL. Concave Pd core/island Pt shell nanoparticles: synthesis and their promising activities towards neutral glucose oxidation. Sensors Actuators B Chem. 2019;281:1–7.

    CAS  Google Scholar 

  6. Li XY, Du XZ. Molybdenum disulfide nanosheets supported Au-Pd bimetallic nanoparticles for non-enzymatic electrochemical sensing of hydrogen peroxide and glucose. Sensors Actuators B Chem. 2017;239:536–43.

    CAS  Google Scholar 

  7. Wang SQ, Xu LP, Liang HW, Yu SH, Wen YQ, Wang ST, et al. Self-interconnecting Pt nanowire network electrode for electrochemical amperometric biosensor. Nanoscale. 2015;7:11460–7.

    CAS  PubMed  Google Scholar 

  8. Ling PH, Zhang Q, Cao TT, Cao F. Versatile three-dimensional porous Cu@Cu2O aerogel networks as electrocatalysts and mimicking peroxidases. Angew Chem Int Ed. 2018;57:6819–24.

    CAS  Google Scholar 

  9. Wang SY, Zhang XH, Huang JL, Chen JH. High-performance non-enzymatic catalysts based on 3D hierarchical hollow porous Co3O4 nanododecahedras in situ decorated on carbon nanotubes for glucose detection and biofuel cell application. Anal Bioanal Chem. 2018;410:2019–29.

    CAS  PubMed  Google Scholar 

  10. Jiang DF, Chu ZY, Peng JM, Luo JY, Mao YY, Yang PQ, et al. One-step synthesis of three-dimensional Co(OH)2/rGO nano-flowers as enzyme-mimic sensors for glucose detection. Electrochim Acta. 2018;270:147–55.

    CAS  Google Scholar 

  11. Gao YJ, Yang FY, Yu QH, Fan R, Yang M, Rao SQ, et al. Three-dimensional porous Cu@Cu2O aerogels for direct voltammetric sensing of glucose. Microchim Acta. 2019;186:192.

    Google Scholar 

  12. Chen SS, Shi YC, Wang AJ, Lin XX, Feng JJ. Free-standing Pt nanowire networks with clean surfaces: highly sensitive electrochemical detection of nitrite. J Electroanal Chem. 2017;791:131–7.

    CAS  Google Scholar 

  13. Bell C, Nammari A, Uttamchandani P, Rai A, Shah P, Moore AL. Flexible electronics-compatible non-enzymatic glucose sensing via transparent CuO nanowire networks on PET films. Nanotechnology. 2017;28:245502.

    PubMed  Google Scholar 

  14. Wen YL, Yuan JY, Chen J, Zhao YL, Niu YZ, Yu C. Amperometric myeloperoxidase immunoassay based on the use of CuPdPt nanowire networks. Microchim Acta. 2018;185:55.

    Google Scholar 

  15. Sano KK, Ishida Y, Aida T. Synthesis of anisotropic hydrogels and their applications. Angew Chem Int Ed. 2018;57:2532–43.

    CAS  Google Scholar 

  16. Tomczykowa M, Plonska-Brzezinska ME. Conducting polymers, hydrogels and their composites: preparation, Properties and Bioapplications. Polymers. 2019;11:350.

    PubMed Central  Google Scholar 

  17. Pyarasani RD, Jayaramudu T, John A. Polyaniline-based conducting hydrogels. J Mater Sci. 2019;54:974–96.

    CAS  Google Scholar 

  18. Muralikrishna S, Nagaraju DH, Balakrishna RG, Surareungchai W, Ramakrishnappa T, Shivanandareddy AB. Hydrogels of polyaniline with graphene oxide for highly sensitive electrochemical determination of lead ions. Anal Chim Acta. 2017;990:67–77.

    CAS  PubMed  Google Scholar 

  19. Al-Sagur H, Komathi S, Khan MA, Gurek AG, Hassan A. A novel glucose sensor using lutetium phthalocyanine as redox mediator in reduced graphene oxide conducting polymer multifunctional hydrogel. Biosens Bioelectron. 2017;92:638–45.

    CAS  PubMed  Google Scholar 

  20. Wang XY, Gao FX, Gong YY, Liu GT, Zhang Y, Ding CF. Electrochemical aptasensor based on conductive supramolecular polymer hydrogels for thrombin detection with high selectivity. Talanta. 2019;205:120140.

    CAS  PubMed  Google Scholar 

  21. Li PP, Jin ZY, Peng LL, Zhao F, Xiao D, Jin Y, et al. Stretchable all-gel-state fiber-shaped supercapacitors enabled by macromolecularly interconnected 3D graphene/nanostructured conductive polymer hydrogels. Adv Mater. 2018;30:1800124.

    Google Scholar 

  22. Promsuwan K, Kachatong N, Limbut W. Simple flow injection system for non-enzymatic glucose sensing based on an electrode modified with palladium nanoparticles-graphene nanoplatelets/mullti-walled carbon nanotubes. Electrochim Acta. 2019;320:134621.

    CAS  Google Scholar 

  23. Wu WY, Miao FJ, Tao BR, Zang Y, Zhu L, Shi CP, et al. Hybrid ZnO-graphene electrode with palladium nanoparticles on Ni foam and application to self-powered nonenzymatic glucose sensing. RSC Adv. 2019;9:12134–45.

    CAS  Google Scholar 

  24. Cai ZX, Liu CC, Wu GL, Chen XM, Chen X. Palladium nanoparticles deposit on multi-walled carbon nanotubes and their catalytic applications for electrooxidation of ethanol and glucose. Electrochim Acta. 2013;112:756–62.

    CAS  Google Scholar 

  25. Ye JS, Chen CW, Lee CL. Pd nanocube as non-enzymatic glucose sensor. Sensors Actuators B Chem. 2015;208:569–74.

    CAS  Google Scholar 

  26. Ensafi AA, Ahmadi Z, Jafari-Asl M, Rezaei B. Graphene nanosheets functionalized with Nile blue as a stable support for the oxidation of glucose and reduction of oxygen based on redox replacement of Pd-nanoparticles via nickel oxide. Electrochim Acta. 2015;173:619–29.

    CAS  Google Scholar 

  27. Samoson K, Thavarungkul P, Kanatharana P, Limbut W. A nonenzymatic glucose sensor based on the excellent dispersion of a graphene oxide-poly(acrylic acid)-palladium nanoparticle-modified screen-printed carbon electrode. J Electrochem Soc. 2019;166:1079–87.

    Google Scholar 

  28. Sedki M, Chen XY, Chen C, Ge X, Mulchandani A. Non-lytic M13 phage-based highly sensitive impedimetric cytosensor for detection of coliforms. Biosens Bioelectron. 2020;148:111794.

    CAS  PubMed  Google Scholar 

  29. Teengam P, Siangproh W, Tuantranont A, Vilaivan T, Chailapakul O, Henry CS. Electrochemical impedance-based DNA sensor using pyrrolidinyl peptide nucleic acids for tuberculosis detection. Anal Chim Acta. 2018;1044:102–9.

    CAS  PubMed  Google Scholar 

  30. Bozkurt S, Tosun B, Sen B, Akocak S, Savk A, Ebeoglugil MF, et al. A hydrogen peroxide sensor based on TNM functionalized reduced graphene oxide grafted with highly monodisperse Pd nanoparticles. Anal Chim Acta. 2017;989:88–94.

    CAS  PubMed  Google Scholar 

  31. Guler M, Turkoglu V, Bulut A, Zahmakiran M. Electrochemical sensing of hydrogen peroxide using Pd@Ag bimetallic nanoparticles decorated functionalized reduced graphene oxide. Electrochim Acta. 2018;263:118–26.

    CAS  Google Scholar 

  32. Hatamluyi B, Lorestani F, Es'haghi Z. Au/Pd@rGO nanocomposite decorated with poly (L-cysteine) as a probe for simultaneous sensitive electrochemical determination of anticancer drugs, Ifosfamide and Etoposide. Biosens Bioelectron. 2018;120:22–9.

    CAS  PubMed  Google Scholar 

  33. Yang ZY, Zhang S, Zheng XH, Fu YY, Zheng JB. Controllable synthesis of copper sulfide for nonenzymatic hydrazine sensing. Sensors Actuators B Chem. 2018;255:2643–51.

    CAS  Google Scholar 

  34. Chen XM, Lin ZJ, Chen DJ, Jia TT, Cai ZM, Wang XR, et al. Nonenzymatic amperometric sensing of glucose by using palladium nanoparticles supported on functional carbon nanotubes. Biosens Bioelectron. 2010;25:1803–8.

    CAS  PubMed  Google Scholar 

  35. Huang BB, Wang Y, Lu ZW, Du HJ, Ye JS. One pot synthesis of palladium-cobalt nanoparticles over carbon nanotubes as a sensitive non-enzymatic sensor for glucose and hydrogen peroxide detection. Sensors Actuators B Chem. 2017;252:1016–25.

    CAS  Google Scholar 

  36. Wang M, Ma ZZ, Li JP, Zhang ZH, Tang B, Wang XG. Well-dispersed palladium nanoparticles on nickel- phosphorus nanosheets as efficient three-dimensional platform for superior catalytic glucose electro-oxidation and non-enzymatic sensing. J Colloid Interface Sci. 2018;511:355–64.

    CAS  PubMed  Google Scholar 

  37. Nantaphol S, Watanabe T, Nomura N, Siangproh W, Chailapakul O, Einaga Y. Bimetallic Pt-au nanocatalysts electrochemically deposited on boron-doped diamond electrodes for nonenzymatic glucose detection. Biosens Bioelectron. 2017;98:76–82.

    CAS  PubMed  Google Scholar 

  38. Lu L, Kang JL. Amperometric non-enzymatic sensing of glucose at very low working potential by using a nanoporous PdAuNi ternary alloy. Microchim Acta. 2018;185:111.

    Google Scholar 

  39. Waqas M, Lan JJ, Zhang XX, Fan YJ, Zhang PY, Liu CZ, et al. Fabrication of non-enzymatic electrochemical glucose sensor based on Pd-Mn alloy nanoparticles supported on reduced graphene oxide. Electroanalysis. 2020;32:1226–36.

    CAS  Google Scholar 

  40. Wang FX, Niu XB, Wang W, Jin WL, Huang YL, Zhang J. Green synthesis of Pd nanoparticles via extracted polysaccharide applied to glucose detection. J Taiwan Inst Chem Eng. 2018;93:87–93.

    Google Scholar 

  41. Savk A, Cellat K, Arikan K, Tezcan F, Gulbay SK, Kizildag S, et al. Highly monodisperse Pd-Ni nanoparticles supported on rGO as a rapid, sensitive, reusable and selective enzyme-free glucose sensor. Sci Rep. 2019;9:19228.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ji YQ, Liu J, Liu XN, Yuen MMF, Fu XZ, Yang Y, et al. 3D porous Cu@Cu2O films supported Pd nanoparticles for glucose electrocatalytic oxidation. Electrochim Acta. 2017;248:299–306.

    CAS  Google Scholar 

  43. Zhong SL, Zhuang JY, Yang DP, Tang DP. Eggshell membrane-templated synthesis of 3D hierarchical porous Au networks for electrochemical non-enzymatic glucose sensor. Biosens Bioelectron. 2017;96:26–32.

    CAS  PubMed  Google Scholar 

  44. Liu TT, Li M, Dong P, Zhang YJ, Guo LP. Design and facile synthesis of mesoporous cobalt nitride nanosheets modified by pyrolytic carbon for the non-enzymatic glucose detection. Sensors Actuators B Chem. 2018;255:1983–94.

    CAS  Google Scholar 

  45. Su YY, Luo BB, Zhang JZ. Controllable cobalt oxide/Au hierarchically nanostructured electrode for nonenzymatic glucose sensing. Anal Chem. 2015;88:1617–24.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry (Xi’an, China).

Funding

This work was financially supported by Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry (Xi’an, China). This work was supported by the National Natural Science Foundation of China (No.21575113), the Natural Science Foundation of Shaanxi Province in China (No.2020JQ859, 2019JQ874), Foundation of Education Department of Shaanxi Province (No.20JK0601, 19JK0235), and the Subject Innovation Team of Shaanxi University of Chinese Medicine (No.2019-PY02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weina Qian or Jianbin Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Qian, W., Guo, H. et al. Facile preparation of novel Pd nanowire networks on a polyaniline hydrogel for sensitive determination of glucose. Anal Bioanal Chem 412, 6849–6858 (2020). https://doi.org/10.1007/s00216-020-02816-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02816-0

Keywords

Navigation