Skip to main content
Log in

Glia Maturation Factor (GMF) Regulates Microglial Expression Phenotypes and the Associated Neurological Deficits in a Mouse Model of Traumatic Brain Injury

  • Original Article
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Traumatic brain injury (TBI) induces inflammatory responses through microglial activation and polarization towards a more inflammatory state that contributes to the deleterious secondary brain injury. Glia maturation factor (GMF) is a pro-inflammatory protein that is responsible for neuroinflammation following insult to the brain, such as in TBI. We hypothesized that the absence of GMF in GMF-knockout (GMF-KO) mice would regulate microglial activation state and the M1/M2 phenotypes following TBI. We used the weight drop model of TBI in C57BL/6 mice wild-type (WT) and GMF-KO mice. Immunofluorescence staining, Western blot, and ELISA assays were performed to confirm TBI-induced histopathological and neuroinflammatory changes. Behavioral analysis was done to check motor coordination ability and cognitive function. We demonstrated that the deletion of GMF in GMF-KO mice significantly limited lesion volume, attenuated neuronal loss, inhibited gliosis, and activated microglia adopted predominantly anti-inflammatory (M2) phenotypes. Using an ELISA method, we found a gradual decrease in pro-inflammatory cytokines (TNF-α and IL-6) and upregulation of anti-inflammatory cytokines (IL-4 and IL-10) in GMF-KO mice compared with WT mice, thus, promoting the transition of microglia towards a more predominantly anti-inflammatory (M2) phenotype. GMF-KO mice showed significant improvement in motor ability, memory, and cognition. Overall, our results demonstrate that GMF deficiency regulates microglial polarization, which ameliorates neuronal injury and behavioral impairments following TBI in mice and concludes that GMF is a regulator of neuroinflammation and an ideal therapeutic target for the treatment of TBI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Al Nimer F, Lindblom R, Strom M, Guerreiro-Cacais AO, Parsa R, Aeinehband S, Mathiesen T, Lidman O et al (2013) Strain influences on inflammatory pathway activation, cell infiltration and complement cascade after traumatic brain injury in the rat. Brain Behav Immun 27(1):109–122. https://doi.org/10.1016/j.bbi.2012.10.002

    Article  CAS  PubMed  Google Scholar 

  2. Zhang QG, Laird MD, Han D, Nguyen K, Scott E, Dong Y, Dhandapani KM, Brann DW (2012) Critical role of NADPH oxidase in neuronal oxidative damage and microglia activation following traumatic brain injury. PLoS One 7(4):e34504. https://doi.org/10.1371/journal.pone.0034504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Beauchamp K, Mutlak H, Smith WR, Shohami E, Stahel PF (2008) Pharmacology of traumatic brain injury: where is the “golden bullet”? Mol Med 14(11–12):731–740. https://doi.org/10.2119/2008-00050.Beauchamp

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gaetz M (2004) The neurophysiology of brain injury. Clin Neurophysiol 115(1):4–18. https://doi.org/10.1016/s1388-2457(03)00258-x

    Article  CAS  PubMed  Google Scholar 

  5. Rivest S (2009) Regulation of innate immune responses in the brain. Nat Rev Immunol 9(6):429–439. https://doi.org/10.1038/nri2565

    Article  CAS  PubMed  Google Scholar 

  6. Greve MW, Zink BJ (2009) Pathophysiology of traumatic brain injury. Mt Sinai J Med 76(2):97–104. https://doi.org/10.1002/msj.20104

    Article  PubMed  Google Scholar 

  7. Loane DJ, Byrnes KR (2010) Role of microglia in neurotrauma. Neurotherapeutics 7(4):366–377. https://doi.org/10.1016/j.nurt.2010.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308(5726):1314–1318. https://doi.org/10.1126/science.1110647

    Article  CAS  PubMed  Google Scholar 

  9. Vilhardt F (2005) Microglia: phagocyte and glia cell. Int J Biochem Cell Biol 37(1):17–21. https://doi.org/10.1016/j.biocel.2004.06.010

    Article  CAS  PubMed  Google Scholar 

  10. Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91(2):461–553. https://doi.org/10.1152/physrev.00011.2010

    Article  CAS  PubMed  Google Scholar 

  11. Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19(8):312–318. https://doi.org/10.1016/0166-2236(96)10049-7

    Article  CAS  PubMed  Google Scholar 

  12. Hu X, Leak RK, Shi Y, Suenaga J, Gao Y, Zheng P, Chen J (2015) Microglial and macrophage polarization-new prospects for brain repair. Nat Rev Neurol 11(1):56–64. https://doi.org/10.1038/nrneurol.2014.207

    Article  PubMed  Google Scholar 

  13. Yao X, Liu S, Ding W, Yue P, Jiang Q, Zhao M, Hu F, Zhang H (2017) TLR4 signal ablation attenuated neurological deficits by regulating microglial M1/M2 phenotype after traumatic brain injury in mice. J Neuroimmunol 310:38–45. https://doi.org/10.1016/j.jneuroim.2017.06.006

    Article  CAS  PubMed  Google Scholar 

  14. Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 29(43):13435–13444. https://doi.org/10.1523/JNEUROSCI.3257-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hu X, Li P, Guo Y, Wang H, Leak RK, Chen S, Gao Y, Chen J (2012) Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke 43(11):3063–3070. https://doi.org/10.1161/STROKEAHA.112.659656

    Article  CAS  PubMed  Google Scholar 

  16. Ansari MA, Roberts KN, Scheff SW (2008) Oxidative stress and modification of synaptic proteins in hippocampus after traumatic brain injury. Free Radic Biol Med 45(4):443–452. https://doi.org/10.1016/j.freeradbiomed.2008.04.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ahmed ME, Javed H, Khan MM, Vaibhav K, Ahmad A, Khan A, Tabassum R, Islam F et al (2013) Attenuation of oxidative damage-associated cognitive decline by Withania somnifera in rat model of streptozotocin-induced cognitive impairment. Protoplasma 250(5):1067–1078. https://doi.org/10.1007/s00709-013-0482-2

    Article  CAS  PubMed  Google Scholar 

  18. Lim R, Liu YX, Zaheer A (1990) Cell-surface expression of glia maturation factor beta in astrocytes. FASEB J 4(15):3360–3363. https://doi.org/10.1096/fasebj.4.15.2253851

    Article  CAS  PubMed  Google Scholar 

  19. Zaheer A, Fink BD, Lim R (1993) Expression of glia maturation factor beta mRNA and protein in rat organs and cells. J Neurochem 60(3):914–920. https://doi.org/10.1111/j.1471-4159.1993.tb03237.x

    Article  CAS  PubMed  Google Scholar 

  20. Ahmed ME, Iyer S, Thangavel R, Kempuraj D, Selvakumar GP, Raikwar SP, Zaheer S, Zaheer A (2017) Co-localization of glia maturation factor with NLRP3 Inflammasome and autophagosome markers in human Alzheimer’s disease brain. J Alzheimers Dis 60(3):1143–1160. https://doi.org/10.3233/JAD-170634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Selvakumar GP, Iyer SS, Kempuraj D, Raju M, Thangavel R, Saeed D, Ahmed ME, Zahoor H et al (2018) Glia maturation factor dependent inhibition of mitochondrial PGC-1alpha triggers oxidative stress-mediated apoptosis in N27 rat dopaminergic neuronal cells. Mol Neurobiol 55(9):7132–7152. https://doi.org/10.1007/s12035-018-0882-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kempuraj D, Khan MM, Thangavel R, Xiong Z, Yang E, Zaheer A (2013) Glia maturation factor induces interleukin-33 release from astrocytes: implications for neurodegenerative diseases. J NeuroImmune Pharmacol 8(3):643–650. https://doi.org/10.1007/s11481-013-9439-7

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zaheer A, Sahu SK, Wu Y, Zaheer A, Haas J, Lee K, Yang B (2007) Diminished cytokine and chemokine expression in the central nervous system of GMF-deficient mice with experimental autoimmune encephalomyelitis. Brain Res 1144:239–247. https://doi.org/10.1016/j.brainres.2007.01.075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Thangavel R, Kempuraj D, Stolmeier D, Anantharam P, Khan M, Zaheer A (2013) Glia maturation factor expression in entorhinal cortex of Alzheimer’s disease brain. Neurochem Res 38(9):1777–1784. https://doi.org/10.1007/s11064-013-1080-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zaheer A, Haas JT, Reyes C, Mathur SN, Yang B, Lim R (2006) GMF-knockout mice are unable to induce brain-derived neurotrophic factor after exercise. Neurochem Res 31(4):579–584. https://doi.org/10.1007/s11064-006-9049-3

    Article  CAS  PubMed  Google Scholar 

  26. Lim R, Zaheer A, Khosravi H, Freeman JH Jr, Halverson HE, Wemmie JA, Yang B (2004) Impaired motor performance and learning in glia maturation factor-knockout mice. Brain Res 1024(1–2):225–232. https://doi.org/10.1016/j.brainres.2004.08.003

    Article  CAS  PubMed  Google Scholar 

  27. Zaheer A, Zaheer S, Sahu SK, Knight S, Khosravi H, Mathur SN, Lim R (2007) A novel role of glia maturation factor: induction of granulocyte-macrophage colony-stimulating factor and pro-inflammatory cytokines. J Neurochem 101(2):364–376. https://doi.org/10.1111/j.1471-4159.2006.04385.x

    Article  CAS  PubMed  Google Scholar 

  28. Milman A, Rosenberg A, Weizman R, Pick CG (2005) Mild traumatic brain injury induces persistent cognitive deficits and behavioral disturbances in mice. J Neurotrauma 22(9):1003–1010. https://doi.org/10.1089/neu.2005.22.1003

    Article  CAS  PubMed  Google Scholar 

  29. Flierl MA, Stahel PF, Beauchamp KM, Morgan SJ, Smith WR, Shohami E (2009) Mouse closed head injury model induced by a weight-drop device. Nat Protoc 4(9):1328–1337. https://doi.org/10.1038/nprot.2009.148

    Article  CAS  PubMed  Google Scholar 

  30. Liang J, Wu S, Xie W, He H (2018) Ketamine ameliorates oxidative stress-induced apoptosis in experimental traumatic brain injury via the Nrf2 pathway. Drug Des Devel Ther 12:845–853. https://doi.org/10.2147/DDDT.S160046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vaibhav K, Shrivastava P, Khan A, Javed H, Tabassum R, Ahmed ME, Khan MB, Moshahid Khan M et al (2013) Azadirachta indica mitigates behavioral impairments, oxidative damage, histological alterations and apoptosis in focal cerebral ischemia-reperfusion model of rats. Neurological Sciences 34(8):1321–1330. https://doi.org/10.1007/s10072-012-1238-z

    Article  PubMed  Google Scholar 

  32. Ahmed ME, Tucker D, Dong Y, Lu Y, Zhao N, Wang R, Zhang Q (2016) Methylene blue promotes cortical neurogenesis and ameliorates behavioral deficit after photothrombotic stroke in rats. Neuroscience 336:39–48. https://doi.org/10.1016/j.neuroscience.2016.08.036

    Article  CAS  PubMed  Google Scholar 

  33. Ahmed ME, Dong Y, Lu Y, Tucker D, Wang R, Zhang Q (2017) Beneficial effects of a CaMKIIalpha inhibitor TatCN21 peptide in global cerebral ischemia. J Mol Neurosci 61(1):42–51. https://doi.org/10.1007/s12031-016-0830-8

    Article  CAS  PubMed  Google Scholar 

  34. Alimov GA, Garmash TI (1981) Interstitial gel hydration and its effect on the terminal portions and periacinar blood capillaries of the parotid salivary gland. Arkh Anat Gistol Embriol 81(12):39–45

    CAS  PubMed  Google Scholar 

  35. Selvakumar GP, Ahmed ME, Thangavel R, Kempuraj D, Dubova I, Raikwar SP, Zaheer S, Iyer SS et al (2020) A role for glia maturation factor dependent activation of mast cells and microglia in MPTP induced dopamine loss and behavioural deficits in mice. Brain Behav Immun 87:429–443. https://doi.org/10.1016/j.bbi.2020.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gan SD, Patel KR (2013) Enzyme immunoassay and enzyme-linked immunosorbent assay. J Invest Dermatol 133(9):e12. https://doi.org/10.1038/jid.2013.287

    Article  CAS  PubMed  Google Scholar 

  37. Vaibhav K, Shrivastava P, Tabassum R, Khan A, Javed H, Ahmed ME, Islam F, Safhi MM et al (2013) Delayed administration of zingerone mitigates the behavioral and histological alteration via repression of oxidative stress and intrinsic programmed cell death in focal transient ischemic rats. Pharmacol Biochem Behav 113:53–62. https://doi.org/10.1016/j.pbb.2013.10.008

    Article  CAS  PubMed  Google Scholar 

  38. Ennaceur A, Aggleton JP (1994) Spontaneous recognition of object configurations in rats: effects of fornix lesions. Exp Brain Res 100(1):85–92. https://doi.org/10.1007/bf00227281

    Article  CAS  PubMed  Google Scholar 

  39. Steckler T, Drinkenburg WH, Sahgal A, Aggleton JP (1998) Recognition memory in rats--I. Concepts and classification. Prog Neurobiol 54(3):289–311. https://doi.org/10.1016/s0301-0082(97)00060-9

    Article  CAS  PubMed  Google Scholar 

  40. Zhao N, Zhuo X, Lu Y, Dong Y, Ahmed ME, Tucker D, Scott EL, Zhang Q (2017) Intranasal delivery of a Caspase-1 inhibitor in the treatment of global cerebral ischemia. Mol Neurobiol 54(7):4936–4952. https://doi.org/10.1007/s12035-016-0034-9

    Article  CAS  PubMed  Google Scholar 

  41. Anderson MJ, Jablonski SA, Klimas DB (2008) Spaced initial stimulus familiarization enhances novelty preference in Long-Evans rats. Behav Process 78(3):481–486. https://doi.org/10.1016/j.beproc.2008.02.005

    Article  Google Scholar 

  42. Mioranzza S, Costa MS, Botton PH, Ardais AP, Matte VL, Espinosa J, Souza DO, Porciuncula LO (2011) Blockade of adenosine A(1) receptors prevents methylphenidate-induced impairment of object recognition task in adult mice. Prog Neuro-Psychopharmacol Biol Psychiatry 35(1):169–176. https://doi.org/10.1016/j.pnpbp.2010.10.022

    Article  CAS  Google Scholar 

  43. Alfieri JA, Silva PR, Igaz LM (2016) Early cognitive/social deficits and late motor phenotype in conditional wild-type TDP-43 transgenic mice. Front Aging Neurosci 8:310. https://doi.org/10.3389/fnagi.2016.00310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jin X, Yamashita T (2016) Microglia in central nervous system repair after injury. J Biochem 159(5):491–496. https://doi.org/10.1093/jb/mvw009

    Article  CAS  PubMed  Google Scholar 

  45. Yamada KH, Kozlowski DA, Seidl SE, Lance S, Wieschhaus AJ, Sundivakkam P, Tiruppathi C, Chishti I et al (2012) Targeted gene inactivation of calpain-1 suppresses cortical degeneration due to traumatic brain injury and neuronal apoptosis induced by oxidative stress. J Biol Chem 287(16):13182–13193. https://doi.org/10.1074/jbc.M111.302612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Keller JN, Kindy MS, Holtsberg FW, St Clair DK, Yen HC, Germeyer A, Steiner SM, Bruce-Keller AJ et al (1998) Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J Neurosci 18(2):687–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nunomura A, Perry G, Aliev G, Hirai K, Takeda A, Balraj EK, Jones PK, Ghanbari H et al (2001) Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol 60(8):759–767. https://doi.org/10.1093/jnen/60.8.759

    Article  CAS  PubMed  Google Scholar 

  48. Dutton RP, Stansbury LG, Leone S, Kramer E, Hess JR, Scalea TM (2010) Trauma mortality in mature trauma systems: are we doing better? An analysis of trauma mortality patterns, 1997-2008. J Trauma 69(3):620–626. https://doi.org/10.1097/TA.0b013e3181bbfe2a

    Article  PubMed  Google Scholar 

  49. Chakravarty S, Herkenham M (2005) Toll-like receptor 4 on nonhematopoietic cells sustains CNS inflammation during endotoxemia, independent of systemic cytokines. J Neurosci 25(7):1788–1796. https://doi.org/10.1523/JNEUROSCI.4268-04.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Perry VH, Nicoll JA, Holmes C (2010) Microglia in neurodegenerative disease. Nat Rev Neurol 6(4):193–201. https://doi.org/10.1038/nrneurol.2010.17

    Article  PubMed  Google Scholar 

  51. Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8(1):57–69. https://doi.org/10.1038/nrn2038

    Article  CAS  PubMed  Google Scholar 

  52. Logsdon AF, Lucke-Wold BP, Nguyen L, Matsumoto RR, Turner RC, Rosen CL, Huber JD (2016) Salubrinal reduces oxidative stress, neuroinflammation and impulsive-like behavior in a rodent model of traumatic brain injury. Brain Res 1643:140–151. https://doi.org/10.1016/j.brainres.2016.04.063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Erwig LP, McPhilips KA, Wynes MW, Ivetic A, Ridley AJ, Henson PM (2006) Differential regulation of phagosome maturation in macrophages and dendritic cells mediated by Rho GTPases and ezrin-radixin-moesin (ERM) proteins. Proc Natl Acad Sci U S A 103(34):12825–12830. https://doi.org/10.1073/pnas.0605331103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Serrador JM, Vicente-Manzanares M, Calvo J, Barreiro O, Montoya MC, Schwartz-Albiez R, Furthmayr H, Lozano F et al (2002) A novel serine-rich motif in the intercellular adhesion molecule 3 is critical for its ezrin/radixin/moesin-directed subcellular targeting. J Biol Chem 277(12):10400–10409. https://doi.org/10.1074/jbc.M110694200

    Article  CAS  PubMed  Google Scholar 

  55. Cernuda-Morollon E, Millan J, Shipman M, Marelli-Berg FM, Ridley AJ (2010) Rac activation by the T-cell receptor inhibits T cell migration. PLoS One 5(8):e12393. https://doi.org/10.1371/journal.pone.0012393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The US Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation heron. The authors express their gratitude for the Acute Effects of Neurotrauma Consortium in assisting and coordinating the conduct of this project at Fort Leonard Wood. Dr. Zaheer (AZ) is the recipient of the VA Research Career Scientist Award.

Funding

The research was sponsored by the Leonard Wood Institute in cooperation with the US Army Research Laboratory and was accomplished under Cooperative Agreement Number W911NF-14-2-0034.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asgar Zaheer.

Ethics declarations

Conflict of Interest

The authors declare that there they have no conflict of interest.

Disclaimer

The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Leonard Wood Institute, the Army Research Laboratory or the US Government.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, M.E., Selvakumar, G.P., Kempuraj, D. et al. Glia Maturation Factor (GMF) Regulates Microglial Expression Phenotypes and the Associated Neurological Deficits in a Mouse Model of Traumatic Brain Injury. Mol Neurobiol 57, 4438–4450 (2020). https://doi.org/10.1007/s12035-020-02040-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-02040-y

Keywords

Navigation