Skip to main content
Log in

Sphingobacterium endophyticum sp. nov., a novel endophyte isolated from halophyte

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

A bacterial strain designated NYYP31T was isolated from the leaves of an annual halophytes, Suaeda corniculata Bunge, collected from the southern edge of the Gurbantunggut desert, north-west China. Strain NYYP31T was Gram-staining negative, strictly aerobic, rod-shaped, non-motile, and non-spore-forming. Growth was observed at 4–42 °C, at pH 5.0–10.0, in the presence of up to 8% (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences and coding sequences of 92 protein clusters showed that strain NYYP31T should be assigned to the genus Sphingobacterium. 16S rRNA gene sequence similarity analysis showed that strain NYYP31T was most closely related to the type strain of Sphingobacterium daejeonense (97.9%) and Sphingobacterium lactis (97.7%). The predominant isoprenoid quinone was MK-7. The major fatty acids were identified as iso-C15:0, iso-C17:0 3-OH and summed feature 3 (C16:1 ω7c and/or C16:1 ω6c). The polar lipids were phosphatidylethanolamine, two unidentified phospholipids, three unidentified lipids, three unidentified amino phospholipids, and two unidentified glycolipids. The genomic DNA G + C content was 36.4 mol%. The average nucleotide identity (ANI) values for strain NYYP31T to the type strains of S. daejeonense and S. lactis were 77.9 and 74.1%, respectively, which were below the cut-off level (95–96%) for species delineation. Based on the above results, strain NYYP31T represents a novel species of the genus Sphingobacterium, for which the name Sphingobacterium endophyticum sp. nov. is proposed. The type strain is NYYP31T (= CGMCC 1.16979T = NBRC 114258T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ANI:

Average nucleotide identity

dDDH:

Digital DNA–DNA hybridization

ML:

Maximum-likelihood

NJ:

Neighbor-joining

UBCG:

Up-to-date bacterial core gene set

References

  • Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genom 9:75

    Article  Google Scholar 

  • Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, Medema MH, Weber T (2019) antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res W1:W81–W87

    Article  Google Scholar 

  • Collins MD, Jones D (1980) Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 48:459–470

    Article  CAS  Google Scholar 

  • Du J, Singh H, Won K, Yang JE, Jin FX, Yi TH (2015) Sphingobacterium mucilaginosum sp. nov., isolated from rhizosphere soil of a rose. Int J Syst Evol Microbiol 65:2949–2954

    Article  CAS  PubMed  Google Scholar 

  • Ewels P, Magnusson M, Lundin S, Käller M (2016) MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32:3047–3048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    PubMed  Google Scholar 

  • Fitch WM (1971) Toward Defining the Course of Evolution: Minimum Change for a Specific Tree Topology. Syst Zool 20:406–416

    Google Scholar 

  • Gonzalez C, Gutierrez C, Ramirez C (1978) Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 24:710–715

    Article  CAS  PubMed  Google Scholar 

  • Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA–DNA hybridization values and their relationship to wholegenome sequence similarities. Int J Syst Evol Microbiol 57:81–91

    CAS  PubMed  Google Scholar 

  • Gouda S, Das G, Sen SK, Shin HS, Patra JK (2016) Endophytes: A Treasure House of Bioactive Compounds of Medicinal Importance. Front Microbiol 29(7):1538

    Google Scholar 

  • Khieu TN, Liu MJ, Nimaichand S, Quach NT, Chu-Ky S, Phi QT, Vu TT, Nguyen TD, Xiong Z, Prabhu DM, Li WJ (2015) Characterization and evaluation of antimicrobial and cytotoxic effects of Streptomyces sp. HUST012 isolated from medicinal plant Dracaena cochinchinensis Lour. Front Microbiol 6:574–582

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim KH, Ten LN, Liu QM, Im WT, Lee ST (2006) Sphingobacterium daejeonense sp. nov., isolated from a compost sample. Int J Syst Evol Microbiol 56:2031–2036

    Article  CAS  PubMed  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitution ns through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    CAS  PubMed  Google Scholar 

  • Komagata K, Suzuki K (1987) Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207

    Article  CAS  Google Scholar 

  • Kroppenstedt RM (1982) Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 5:2359–2367

    Article  CAS  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T, Ussery DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai WA, Hameed A, Liu YC, Hsu YH, Lin SY, Young CC (2016) Sphingobacterium cibi sp. nov., isolated from the food-waste compost and emended descriptions of Sphingobacterium spiritivorum Holmes Yabuuchi et al. 1983 and Sphingobacterium thermophilum Yabe et al. Int J Syst Evol Microbiol 66:5336–5344

    Article  CAS  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Lee I, Ouk Kim Y, Park SC, Chun J (2016) OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66:1100–1103

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Yang LL, Xu CK, Xi JQ, Yang FX, Zhou F, Zhou Y, Mo MH, Li WJ (2012) Sphingobacterium nematocida sp. nov., a nematicidal endophytic bacterium isolated from tobacco. Int J Syst Evol Microbiol 62:1809–1813

    Article  CAS  PubMed  Google Scholar 

  • Long X, Liu B, Zhang S, Zhang Y, Zeng Z, Tian Y (2016) Sphingobacterium griseoflavum sp. nov., isolated from the insect Teleogryllus occipitalis living in deserted cropland. Int J Syst Evol Microbiol 66:1956–1961

    Article  CAS  PubMed  Google Scholar 

  • Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14:60

    Article  PubMed  PubMed Central  Google Scholar 

  • Minnikin D, O’donnell A, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett J (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

    Article  CAS  Google Scholar 

  • Narsing Rao MP, Dong ZY, Kan Y, Dong L, Li S, Xiao M, Kang YQ, Zhang K, Li WJ (2020) Description of Paenibacillus tepidiphilus sp. nov., isolated from a tepid spring. Int J Syst Evol Microbiol 70:1977–1981

    Article  PubMed  Google Scholar 

  • Na SI, Kim YO, Yoon SH, Ha SM, Baek I, Chun J (2018) UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 56:280–285

    Article  CAS  PubMed  Google Scholar 

  • Parte AC (2018) LPSN - List of prokaryotic names with standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 68:1825–1829

    Article  PubMed  Google Scholar 

  • Peng S, Hong DD, Xin YB, Jun LM, Hong WG (2014) Sphingobacterium yanglingense sp. nov., isolated from the nodule surface of soybean. Int J Syst Evol Microbiol 64:3862–3866

    Article  PubMed  Google Scholar 

  • Qin S, Li J, Chen HH, Zhao GZ, Zhu WY, Jiang CL, Xu LH, Li WJ (2009) Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna, China. Appl Environ Microbiol 75:6176–6186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids, MIDI technical note 101. Microbial ID Inc, Newark

    Google Scholar 

  • Schmidt VS, Wenning M, Scherer S (2012) Sphingobacterium lactis sp. nov. and Sphingobacterium alimentarium sp. nov., isolated from raw milk and a dairy environment. Int J Syst Evol Microbiol 62:1506–1511

    Article  CAS  PubMed  Google Scholar 

  • Smibert RM, Krieg NR, (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for General and Molecular Bacteriology. American Society for Microbiology, Washington, DC, pp 607–655

  • Souza Rd, Ambrosini A, Passaglia LM (2015) Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 38:401–419

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang SK, Li WJ, Dong W, Zhang YG, Xu LH, Jiang CL (2003) Studies of the Biological Characteristics of Some Halophilic and Halotolerant Actinomycetes Isolated from Saline and Alkaline Soils. Actinomycetologica 17:6–10

    Article  CAS  Google Scholar 

  • Wauters G, Janssens M, De Baere T, Vaneechoutte M, Deschaght P (2011) Isolates belonging to CDC group II-i belong predominantly to Sphingobacterium mizutaii Yabuuchi et al. 1983 : Emended descriptions of S mizutaii and of the genus Sphingobacterium. Int J Syst Evol Miicrobiol 62:2598–2601

    Article  Google Scholar 

  • Wei W, Zhou Y, Wang X, Huang X, Lai R (2008) Sphingobacterium anhuiense sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 58:2098–2101

    Article  CAS  PubMed  Google Scholar 

  • Xiao N, Liu Y, Gu Z, Liu X, Jiao N, Liu H, Zhou Y, Shen L (2015) Sphingobacterium yamdrokense sp. nov., isolated from Lake Yamdrok. Antonie Van Leeuwenhoek 107:1331–1336

    Article  CAS  PubMed  Google Scholar 

  • Yabuuchi E, Kaneko T, Yano I, Moss CW, Miyoshi N (1983) Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: glucose-nonfer-menting gram-negative rods in CDC groups IIK-2 and IIb. Int J Syst Bacteriol 33:580–598

    Article  Google Scholar 

  • Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the open subject of the Key Laboratory of the Autonomous Region (2017D04008) and National Natural Science Foundation of China (No. 31570109).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Deng-Di An or Wen-Jun Li.

Ethics declarations

Conflict of interest

The authors declare that they have no direct or indirect conflict of interest.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1094 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, YY., Liu, F., Li, YQ. et al. Sphingobacterium endophyticum sp. nov., a novel endophyte isolated from halophyte. Arch Microbiol 202, 2771–2778 (2020). https://doi.org/10.1007/s00203-020-02000-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-020-02000-z

Keywords

Navigation