Skip to main content

Advertisement

Log in

Maternal high protein-diet programs impairment of offspring’s bone mass through miR-24-1-5p mediated targeting of SMAD5 in osteoblasts

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Maternal nutrition is crucial for the offspring’s skeleton development and the onset of osteoporosis later in life. While maternal low protein diet has been shown to regulate bone mass negatively, the effect of a high protein diet (HP) remains unexplored. Here, we found that C57BL/6 mice fed with HP delivered offspring with decreased skeletal mineralization at birth and reduced bone mass throughout their life due to a decline in their osteoblast maturation. A small RNA sequencing study revealed that miR-24-1-5p was highly upregulated in HP group osteoblasts. Target prediction and validation studies identified SMAD-5 as a direct target of miR-24-1-5p. Furthermore, mimic and inhibitor studies showed a negative correlation between miR-24-1-5p expression and osteoblast function. Moreover, ex vivo inhibition of miR-24-1-5p reversed the reduced maturation and SMAD-5 expression in the HP group osteoblasts. Together, we show that maternal HP diminishes the bone mass of the offspring through miR-24-1-5p.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cooper C et al (1997) Growth in infancy and bone mass in later life. Ann Rheum Dis 56(1):17–21

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Cooper C et al (2002) The fetal origins of osteoporotic fracture. Calcif Tissue Int 70(5):391–394

    CAS  PubMed  Google Scholar 

  3. Jordan KM, Cooper C (2002) Epidemiology of osteoporosis. Best Pract Res Clin Rheumatol 16(5):795–806

    CAS  PubMed  Google Scholar 

  4. Thompson JN (2007) Fetal nutrition and adult hypertension, diabetes, obesity, and coronary artery disease. Neonatal Netw 26(4):235–240

    PubMed  Google Scholar 

  5. Cleal JK et al (2007) Mismatched pre- and postnatal nutrition leads to cardiovascular dysfunction and altered renal function in adulthood. Proc Natl Acad Sci USA 104(22):9529–9533

    CAS  PubMed  Google Scholar 

  6. Stocker CJ, Arch JR, Cawthorne MA (2005) Fetal origins of insulin resistance and obesity. Proc Nutr Soc 64(2):143–151

    CAS  PubMed  Google Scholar 

  7. Simmons R (2011) Epigenetics and maternal nutrition: nature v. nurture. Proc Nutr Soc 70(1):73–81

    CAS  PubMed  Google Scholar 

  8. Goyal D, Limesand SW, Goyal R (2019) Epigenetic responses and the developmental origins of health and disease. J Endocrinol 242(1):T105–T119

    CAS  PubMed  Google Scholar 

  9. Baird J et al (2011) Does birthweight predict bone mass in adulthood? A systematic review and meta-analysis. Osteoporos Int 22(5):1323–1334

    CAS  PubMed  Google Scholar 

  10. Flanagan DE et al (1999) Reduced foetal growth and growth hormone secretion in adult life. Clin Endocrinol 50(6):735–740

    CAS  Google Scholar 

  11. Javaid MK et al (2006) Maternal vitamin D status during pregnancy and childhood bone mass at age 9 years: a longitudinal study. Lancet 367(9504):36–43

    CAS  PubMed  Google Scholar 

  12. Zhu K et al (2014) Maternal vitamin D status during pregnancy and bone mass in offspring at 20 years of age: a prospective cohort study. J Bone Miner Res 29(5):1088–1095

    CAS  PubMed  Google Scholar 

  13. Ganpule A et al (2006) Bone mass in Indian children-relationships to maternal nutritional status and diet during pregnancy: the Pune Maternal Nutrition Study. J Clin Endocrinol Metab 91(8):2994–3001

    CAS  PubMed  Google Scholar 

  14. Villa CR et al (2016) Maternal vitamin D beneficially programs metabolic, gut and bone health of mouse male offspring in an obesogenic environment. Int J Obes 40(12):1875–1883

    CAS  Google Scholar 

  15. Suntornsaratoon P, Krishnamra N, Charoenphandhu N (2015) Positive long-term outcomes from presuckling calcium supplementation in lactating rats and the offspring. Am J Physiol Endocrinol Metab 308(11):E1010–E1022

    CAS  PubMed  Google Scholar 

  16. Hastings-Roberts MM, Zeman FJ (1977) Effects of protein deficiency, pair-feeding, or diet supplementation on maternal, fetal and placental growth in rats. J Nutr 107(6):973–982

    CAS  PubMed  Google Scholar 

  17. Mehta G et al (2002) Intrauterine exposure to a maternal low protein diet reduces adult bone mass and alters growth plate morphology in rats. Calcif Tissue Int 71(6):493–498

    CAS  PubMed  Google Scholar 

  18. Andreasyan K et al (2007) Higher maternal dietary protein intake in late pregnancy is associated with a lower infant ponderal index at birth. Eur J Clin Nutr 61(4):498–508

    CAS  PubMed  Google Scholar 

  19. Blumfield ML et al (2012) Systematic review and meta-analysis of energy and macronutrient intakes during pregnancy in developed countries. Nutr Rev 70(6):322–336

    PubMed  Google Scholar 

  20. Rush D, Stein Z, Susser M (1980) A randomized controlled trial of prenatal nutritional supplementation in New York City. Pediatrics 65(4):683–697

    CAS  PubMed  Google Scholar 

  21. Ota E et al (2012) Antenatal dietary advice and supplementation to increase energy and protein intake. Cochrane Database Syst Rev 9:CD000032

    Google Scholar 

  22. Sloan NL et al (2001) The effect of prenatal dietary protein intake on birth weight. Nutr Res 21(1–2):129–139

    CAS  Google Scholar 

  23. Rigueur D, Lyons KM (2014) Whole-mount skeletal staining. Methods Mol Biol 1130:113–121

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ali SJ et al (2019) Bone loss in MPTP mouse model of Parkinson’s disease is triggered by decreased osteoblastogenesis and increased osteoclastogenesis. Toxicol Appl Pharmacol 363:154–163

    CAS  PubMed  Google Scholar 

  25. Sharan K et al (2017) Regulation of bone mass through pineal-derived melatonin-MT2 receptor pathway. J Pineal Res 63(2):e12423

    PubMed Central  Google Scholar 

  26. Ali SJ et al (2019) Chlorpyrifos exposure induces parkinsonian symptoms and associated bone loss in adult swiss albino mice. Neurotox Res 36(4):700–711

    CAS  PubMed  Google Scholar 

  27. Roman-Garcia P et al (2014) Vitamin B(1)(2)-dependent taurine synthesis regulates growth and bone mass. J Clin Invest 124(7):2988–3002

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lewis KE et al (2017) Skeletal site-specific changes in bone mass in a genetic mouse model for human 15q11-13 duplication seen in Autism. Sci Rep 7(1):9902

    PubMed  PubMed Central  Google Scholar 

  29. Sharan K et al (2011) A novel quercetin analogue from a medicinal plant promotes peak bone mass achievement and bone healing after injury and exerts an anabolic effect on osteoporotic bone: the role of aryl hydrocarbon receptor as a mediator of osteogenic action. J Bone Miner Res 26(9):2096–2111

    CAS  PubMed  Google Scholar 

  30. Bachagol D et al (2018) Stimulation of liver IGF-1 expression promotes peak bone mass achievement in growing rats: a study with pomegranate seed oil. J Nutr Biochem 52:18–26

    CAS  PubMed  Google Scholar 

  31. Pahwa H, Khan MT, Sharan K (2020) Hyperglycemia impairs osteoblast cell migration and chemotaxis due to a decrease in mitochondrial biogenesis. Mol Cell Biochem 469:109–118

    CAS  PubMed  Google Scholar 

  32. Gavva C et al (2020) Glycosaminoglycans from fresh water fish processing discard—isolation, structural characterization, and osteogenic activity. Int J Biol Macromol 145:558–567

    CAS  PubMed  Google Scholar 

  33. Khan K et al (2012) [6]-Gingerol induces bone loss in ovary intact adult mice and augments osteoclast function via the transient receptor potential vanilloid 1 channel. Mol Nutr Food Res 56(12):1860–1873

    CAS  PubMed  Google Scholar 

  34. Kureel J et al (2014) miR-542-3p suppresses osteoblast cell proliferation and differentiation, targets BMP-7 signaling and inhibits bone formation. Cell Death Dis 5:e1050

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kushwaha P et al (2016) MicroRNA 874-3p exerts skeletal anabolic effects epigenetically during weaning by suppressing Hdac1 expression. J Biol Chem 291(8):3959–3966

    CAS  PubMed  Google Scholar 

  36. Hyde NK et al (2017) Maternal nutrition during pregnancy: intake of nutrients important for bone health. Matern Child Health J 21(4):845–851

    PubMed  Google Scholar 

  37. Switkowski KM et al (2016) Maternal protein intake during pregnancy and linear growth in the offspring. Am J Clin Nutr 104(4):1128–1136

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Walther T et al (2011) High-protein diet in lactation leads to a sudden infant death-like syndrome in mice. PLoS ONE 6(3):e17443

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Dirckx N, Van Hul M, Maes C (2013) Osteoblast recruitment to sites of bone formation in skeletal development, homeostasis, and regeneration. Birth Defects Res C Embryo Today 99(3):170–191

    CAS  PubMed  Google Scholar 

  40. Karner CM, Long F (2018) Glucose metabolism in bone. Bone 115:2–7

    CAS  PubMed  Google Scholar 

  41. Maredsous C et al (2016) High-protein exposure during gestation or lactation or after weaning has a period-specific signature on rat pup weight, adiposity, food intake, and glucose homeostasis up to 6 weeks of age. J Nutr 146(1):21–29

    Google Scholar 

  42. Carlin G et al (2020) Perinatal exposure of rats to a maternal diet with varying protein quantity and quality affects the risk of overweight in female adult offspring. J Nutr Biochem 79:108333

    CAS  PubMed  Google Scholar 

  43. Carlin G et al (2019) Maternal high-protein diet during pregnancy modifies rat offspring body weight and insulin signalling but not macronutrient preference in adulthood. Nutrients 11(1):96

    CAS  PubMed Central  Google Scholar 

  44. Kenkre JS, Bassett J (2018) The bone remodelling cycle. Ann Clin Biochem 55(3):308–327

    CAS  PubMed  Google Scholar 

  45. Tanaka S (2007) Signaling axis in osteoclast biology and therapeutic targeting in the RANKL/RANK/OPG system. Am J Nephrol 27(5):466–478

    PubMed  Google Scholar 

  46. Jensen ED, Gopalakrishnan R, Westendorf JJ (2010) Regulation of gene expression in osteoblasts. BioFactors 36(1):25–32

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Deodati A, Inzaghi E, Cianfarani S (2019) Epigenetics and in utero acquired predisposition to metabolic disease. Front Genet 10:1270

    CAS  PubMed  Google Scholar 

  48. Gicquel C, El-Osta A, Le Bouc Y (2008) Epigenetic regulation and fetal programming. Best Pract Res Clin Endocrinol Metab 22(1):1–16

    CAS  PubMed  Google Scholar 

  49. Dumortier O et al (2014) Maternal protein restriction leads to pancreatic failure in offspring: role of misexpressed microRNA-375. Diabetes 63(10):3416–3427

    CAS  PubMed  Google Scholar 

  50. Alejandro EU et al (2014) Maternal diet-induced microRNAs and mTOR underlie beta cell dysfunction in offspring. J Clin Invest 124(10):4395–4410

    PubMed  PubMed Central  Google Scholar 

  51. Zhang J et al (2009) Maternal high fat diet during pregnancy and lactation alters hepatic expression of insulin like growth factor-2 and key microRNAs in the adult offspring. BMC Genomics 10:478

    PubMed  PubMed Central  Google Scholar 

  52. Wang RN et al (2014) Bone morphogenetic protein (BMP) signaling in development and human diseases. Genes Dis 1(1):87–105

    PubMed  PubMed Central  Google Scholar 

  53. Lee KS et al (2000) Runx2 is a common target of transforming growth factor beta1 and bone morphogenetic protein 2, and cooperation between Runx2 and Smad5 induces osteoblast-specific gene expression in the pluripotent mesenchymal precursor cell line C2C12. Mol Cell Biol 20(23):8783–8792

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Karner CM, Lee SY, Long F (2017) Bmp induces osteoblast differentiation through both Smad4 and mTORC1 signaling. Mol Cell Biol 37(4):e00253-16

    PubMed  PubMed Central  Google Scholar 

  55. Nishimura R et al (1998) Smad5 and DPC4 are key molecules in mediating BMP-2-induced osteoblastic differentiation of the pluripotent mesenchymal precursor cell line C2C12. J Biol Chem 273(4):1872–1879

    CAS  PubMed  Google Scholar 

  56. Yamamoto N et al (1997) Smad1 and smad5 act downstream of intracellular signalings of BMP-2 that inhibits myogenic differentiation and induces osteoblast differentiation in C2C12 myoblasts. Biochem Biophys Res Commun 238(2):574–580

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Naibedya Chattopadhyay (CSIR-Central Drug Research Institute, Lucknow, India) for the µ-CT facility and Genotypic Technology Private Ltd. (Bangalore, India) for the small RNA sequencing and analysis.

Funding

This study was supported by Department of Biotechnology, Government of India. Funding from the Science and Engineering Research Board (SERB), Government of India (KS), and research fellowship grants from the Department of Science and Technology (GE) are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunal Sharan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest in regard to this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 445 kb)

Supplementary material 2 (PDF 306 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ellur, G., Sukhdeo, S.V., Khan, M.T. et al. Maternal high protein-diet programs impairment of offspring’s bone mass through miR-24-1-5p mediated targeting of SMAD5 in osteoblasts. Cell. Mol. Life Sci. 78, 1729–1744 (2021). https://doi.org/10.1007/s00018-020-03608-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03608-6

Keywords

Navigation