Skip to main content
Research Article

Central Sympathetic Nervous System Effects on Cognitive-Motor Performance

Results From a Placebo-Controlled Pharmacological Study

Published Online:https://doi.org/10.1027/1618-3169/a000475

Abstract. The intriguing interplay between acute stress physiology and cognitive processes has long been noted. However, while stress-induced release of glucocorticoids has repeatedly been shown to impact brain mechanisms underlying cognition and memory, less experimental research addressed the effects of stress-induced central sympathetic nervous system (SNS) activation on cognitive performance. Moreover, despite the long-standing notion that the way performance is modulated by arousal may crucially depend on task complexity, mechanistic research demonstrating a direct, causal influence of altered SNS activity is scarce. Twelve healthy men participated in a placebo-controlled, pharmacologic dose–response study involving three within-subject assessments (1-week intervals). Subjective and objective indices of SNS activity as well as reaction time (RT) in three different tasks varying in cognitive demand (simple RT, choice RT, and verbal RT in complex mental arithmetic) were assessed during modulation of central SNS tone by intravenous infusions of dexmedetomidine (alpha2-agonist), yohimbine (alpha2-antagonist), and placebo. Cognitive performance was negatively affected by alpha2-agonism in all task conditions. By contrast, administration of yohimbine improved simple RT, while diminishing complex RT, supporting the assumption of a nonlinear way of action depending on task characteristics. Our results highlight the consequences of central (noradrenergic) SNS activation for cognitive-motor performance in RT tasks of varying complexity.

References

  • Al'Absi, M., Bongard, S., Buchanan, T., Pincomb, G. A., Licinio, J., & Lovallo, W. R. (1997). Cardiovascular and neuroendocrine adjustment to public speaking and mental arithmetic stressors. Psychophysiology, 34(3), 266–275. First citation in articleCrossref MedlineGoogle Scholar

  • Arent, S. M., & Landers, D. M. (2003). Arousal, anxiety, and performance: A reexamination of the inverted-U hypothesis. Research Quarterly for Exercise and Sport, 74, 436–444. 10.1080/02701367.2003.10609113 First citation in articleCrossref MedlineGoogle Scholar

  • Aston-Jones, G., Chiang, C., & Alexinsky, T. (1991). Discharge of noradrenergic locus coeruleus neurons in behaving rats and monkeys suggests a role in vigilance. Progress in Brain Research, 88, 501–520. 10.1016/S0079-6123(08)63830-3 First citation in articleCrossref MedlineGoogle Scholar

  • Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleusnorepinephrine function: Adaptive gain and optimal performance. Annual Review of Neuroscience, 28, 403–450. 10.1146/annurev.neuro.28.061604.135709 First citation in articleCrossref MedlineGoogle Scholar

  • Bachmann, P., Finke, J. B., Rebeck, D., Zhang, X., Larra, M. F., Koch, K. P., ... Schächinger, H. (2019). Testretest reproducibility of a combined physical and cognitive stressor. Biological Psychology, 148, 107729. 10.1016/j.biopsycho.2019.107729 First citation in articleCrossref MedlineGoogle Scholar

  • Baldi, E., & Bucherelli, C. (2005). The inverted “U-shaped” doseeffect relationships in learning and memory: Modulation of arousal and consolidation. Nonlinearity in Biology, Toxicology, Medicine, 3(1), nonlin-003.01.0. 10.2201/nonlin.003.01.002 First citation in articleCrossrefGoogle Scholar

  • Buchanan, T. W., & Lovallo, W. R. (2001). Enhanced memory for emotional material following stress-level cortisol treatment in humans. Psychoneuroendocrinology, 26, 307–317. 10.1016/s0306-4530(00)00058-5 First citation in articleCrossref MedlineGoogle Scholar

  • Calabrese, E. J. (2008). Neuroscience and hormesis: Overview and general findings. Critical Reviews in Toxicology, 38, 249–252. 10.1080/10408440801981957 First citation in articleCrossref MedlineGoogle Scholar

  • Callister, R, Suwarno, N. O., & Seals, D. R. (1992). Sympathetic activity is influenced by task difficulty and stress perception during mental challenge in humans. The Journal of Physiology, 454, 373–387. 10.1113/jphysiol.1992.sp019269 First citation in articleCrossref MedlineGoogle Scholar

  • Chamberlain, S. R., & Robbins, T. W. (2013). Noradrenergic modulation of cognition: Therapeutic implications. Journal of Psychopharmacology, 27, 694–718. 10.1177/0269881113480988 First citation in articleCrossref MedlineGoogle Scholar

  • Dickerson, S. S., & Kemeny, M. E. (2004). Acute stressors and cortisol responses: A theoretical integration and synthesis of laboratory research. Psychological Bulletin, 130, 355–391. 10.1037/0033-2909.130.3.355 First citation in articleCrossref MedlineGoogle Scholar

  • Dienes, Z. (2014). Using Bayes to get the most out of non-significant results. Frontiers in Psychology, 5, 781. 10.3389/fpsyg.2014.00781 First citation in articleCrossref MedlineGoogle Scholar

  • Dyck, J. B., Maze, M., Haack, C., Azarnoff, D. L., Vuorilehto, L., & Shafer, S. L. (1993). Computer-controlled infusion of intravenous dexmedetomidine hydrochloride in adult human volunteers. Anesthesiology, 78, 821–828. 10.1097/00000542-199305000-00003 First citation in articleCrossref MedlineGoogle Scholar

  • Fernandez-Duque, D., & Posner, M. I. (1997). Relating the mechanisms of orienting and alerting. Neuropsychologia, 35, 477–486. 10.1016/s0028-3932(96)00103-0 First citation in articleCrossref MedlineGoogle Scholar

  • Fibiger, W., Evans, O., & Singer, G. (1986). Hormonal responses to a graded mental workload. European Journal of Applied Physiology and Occupational Physiology, 55, 339–343. 10.1007/bf00422730 First citation in articleCrossref MedlineGoogle Scholar

  • Fischer, T., Langner, R., Birbaumer, N., & Brocke, B. (2008). Arousal and attention: Self-chosen stimulation optimizes cortical excitability and minimizes compensatory effort. Journal of Cognitive Neuroscience, 20, 1443–1453. 10.1162/jocn.2008.20101 First citation in articleCrossref MedlineGoogle Scholar

  • Frings, C., Larra, M. F., Gräbener, A., Moeller, B., & Schächinger, H. (2013). Stress disrupts distractor-based retrieval of SR episodes. Biological Psychology, 93(1), 58–64. 10.1016/j.biopsycho.2013.01.013 First citation in articleCrossref MedlineGoogle Scholar

  • Goldberg, M. R., Hollister, A. S., & Robertson, D. (1983). Influence of yohimbine on blood pressure, autonomic reflexes, and plasma catecholamines in humans. Hypertension, 5, 772–778. 10.1161/01.hyp.5.5.772 First citation in articleCrossref MedlineGoogle Scholar

  • Gould, E., Woolley, C. S., & McEwen, B. S. (1990). Short-term glucocorticoid manipulations affect neuronal morphology and survival in the adult dentate gyrus. Neuroscience, 37, 367–375. 10.1016/0306-4522(90)90407-u First citation in articleCrossref MedlineGoogle Scholar

  • Gronwall, D. M. A. (1977). Paced auditory serial-addition task: A measure of recovery from concussion. Perceptual and Motor Skills, 44, 367–373. 10.2466/pms.1977.44.2.367 First citation in articleCrossref MedlineGoogle Scholar

  • Halliday, R., Naylor, H., Brandeis, D., Callaway, E., Yano, L., & Herzig, K. (1994). The effect of d‐amphetamine, clonidine, and yohimbine on human information processing. Psychophysiology, 31, 331–337. 10.1111/j.1469-8986.1994.tb02441.x First citation in articleCrossref MedlineGoogle Scholar

  • Hedner, T., Edgar, B., Edvinsson, L., Hedner, J., Persson, B., & Pettersson, A. (1992). Yohimbine pharmacokinetics and interaction with the sympathetic nervous system in normal volunteers. European Journal of Clinical Pharmacology, 43, 651–656. 10.1007/bf02284967 First citation in articleCrossref MedlineGoogle Scholar

  • Hein, L., Altman, J. D., & Kobilka, B. K. (1999). Two functionally distinct α2-adrenergic receptors regulate sympathetic neurotransmission. Nature, 402, 181–184. 10.1038/46040 First citation in articleCrossref MedlineGoogle Scholar

  • Hines, E. A., Jr., & Brown, G. E. (1936). The cold pressor test for measuring the reactibility of the blood pressure: Data concerning 571 normal and hypertensive subjects. American Heart Journal, 11(1), 1–9. 10.1016/s0002-8703(36)90370-8 First citation in articleCrossrefGoogle Scholar

  • Kirschbaum, C., Pirke, K.-M., & Hellhammer, D. H. (1993). The ‘Trier Social Stress Test’–a tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology, 28(12), 76–81. 10.1159/000119004 First citation in articleCrossref MedlineGoogle Scholar

  • Korf, J., Aghajanian, G. K., & Roth, R. H. (1973). Increased turnover of norepinephrine in the rat cerebral cortex during stress: Role of the locus coeruleus. Neuropharmacology, 12, 933–938. 10.1016/0028-3908(73)90024-5 First citation in articleCrossref MedlineGoogle Scholar

  • Lambourne, K., & Tomporowski, P. (2010). The effect of exercise-induced arousal on cognitive task performance: A meta-regression analysis. Brain Research, 1341, 12–24. 10.1016/j.brainres.2010.03.091 First citation in articleCrossref MedlineGoogle Scholar

  • Langewitz, W., Rüddel, H., & Schächinger, H. (1994). Reduced parasympathetic cardiac control in patients with hypertension at rest and under mental stress. American Heart Journal, 127(1), 122–128. 10.1016/0002-8703(94)90517-7 First citation in articleCrossref MedlineGoogle Scholar

  • Larra, M. F., Finke, J. B., Wascher, E., & Schächinger, H. (2020). Disentangling sensorimotor and cognitive cardioafferent effects: A cardiac-cycle-time study on spatial stimulus-response compatibility. Scientific Reports, 10(1), 1–10. 10.1038/s41598-020-61068-1 First citation in articleCrossref MedlineGoogle Scholar

  • Le Corre, P., Dollo, G., Chevanne, F., & Le Verge, R. (1999). Biopharmaceutics and metabolism of yohimbine in humans. European Journal of Pharmaceutical Sciences, 9(1), 79–84. 10.1016/s0928-0987(99)00046-9 First citation in articleCrossref MedlineGoogle Scholar

  • Lejuez, C. W., Kahler, C. W., & Brown, R. A. (2003). A modified computer version of the Paced Auditory Serial Addition Task (PASAT) as a laboratory-based stressor. The Behavior Therapist, 26, 290–293. First citation in articleGoogle Scholar

  • Lovallo, W. (1975). The cold pressor test and autonomic function: A review and integration. Psychophysiology, 12, 268–282. 10.1111/j.1469-8986.1975.tb01289.x First citation in articleCrossref MedlineGoogle Scholar

  • Marko, M., & Riečanský, I. (2018). Sympathetic arousal, but not disturbed executive functioning, mediates the impairment of cognitive flexibility under stress. Cognition, 174, 94–102. 10.1016/j.cognition.2018.02.004 First citation in articleCrossref MedlineGoogle Scholar

  • Martens, R., & Landers, D. M. (1970). Motor performance under stress: A test of the inverted-U hypothesis. Journal of Personality and Social Psychology, 16(1), 29. 10.1037/h0029787 First citation in articleCrossref MedlineGoogle Scholar

  • Mathias, C. W., Stanford, M. S., & Houston, R. J. (2004). The physiological experience of the Paced Auditory Serial Addition Task (PASAT): Does the PASAT induce autonomic arousal? Archives of Clinical Neuropsychology, 19, 543–554. 10.1016/j.acn.2003.08.001 First citation in articleCrossref MedlineGoogle Scholar

  • McIntyre, D., Ring, C., Hamer, M., & Carroll, D. (2007). Effects of arterial and cardiopulmonary baroreceptor activation on simple and choice reaction times. Psychophysiology, 44, 874–879. 10.1111/j.1469-8986.2007.00547.x First citation in articleCrossref MedlineGoogle Scholar

  • Nieuwenhuis, S., Van Nieuwpoort, I. C., Veltman, D. J., & Drent, M. L. (2007). Effects of the noradrenergic agonist clonidine on temporal and spatial attention. Psychopharmacology, 193, 261–269. 10.1007/s00213-007-0770-7 First citation in articleCrossref MedlineGoogle Scholar

  • Philippsen, C., Hahn, M., Schwabe, L., Richter, S., Drewe, J., & Schachinger, H. (2007). Cardiovascular reactivity to mental stress is not affected by alpha2-adrenoreceptor activation or inhibition. Psychopharmacology, 190, 181–188. 10.1007/s00213-006-0597-7 First citation in articleCrossref MedlineGoogle Scholar

  • Posner, M. I. (2008). Measuring alertness. Annals of the New York Academy of Sciences, 1129(1), 193–199. 10.1196/annals.1417.011 First citation in articleCrossref MedlineGoogle Scholar

  • Posner, M. I. (2016). Orienting of attention: Then and now. The Quarterly Journal of Experimental Psychology, 69, 1864–1875. 10.1080/17470218.2014.937446 First citation in articleCrossrefGoogle Scholar

  • Qi, M., & Gao, H. (2020). Acute psychological stress promotes general alertness and attentional control processes: An ERP study. Psychophysiology, 57, e13521. 10.1111/psyp.13521 First citation in articleCrossref MedlineGoogle Scholar

  • Rau, H., Pauli, P., Brody, S., Elbert, T., & Birbaumer, N. (1993). Baroreceptor stimulation alters cortical activity. Psychophysiology, 30, 322–325. 10.1111/j.1469-8986.1993.tb03359.x First citation in articleCrossref MedlineGoogle Scholar

  • Roozendaal, B. (2002). Stress and memory: Opposing effects of glucocorticoids on memory consolidation and memory retrieval. Neurobiology of Learning and Memory, 78, 578–595. 10.1006/nlme.2002.4080 First citation in articleCrossref MedlineGoogle Scholar

  • Schächinger, H., Cox, D., Linder, L., Brody, S., & Keller, U. (2003). Cognitive and psychomotor function in hypoglycemia: Response error patterns and retest reliability. Pharmacology Biochemistry and Behavior, 75, 915–920. 10.1016/s0091-3057(03)00167-9 First citation in articleCrossref MedlineGoogle Scholar

  • Scheinin, H., Aantaa, R., Anttila, M., Hakola, P., Helminen, A., & Karhuvaara, S. (1998). Reversal of the sedative and sympatholytic effects of dexmedetomidine with a specific alpha2-adrenoceptor antagonist atipamezole: A pharmacodynamic and kinetic study in healthy volunteers. Anesthesiology, 89, 574–584. 10.1097/00000542-199809000-00005 First citation in articleCrossref MedlineGoogle Scholar

  • Schilling, T. M., Larra, M. F., Deuter, C. E., Blumenthal, T. D., & Schächinger, H. (2014). Rapid cortisol enhancement of psychomotor and startle reactions to side-congruent stimuli in a focused cross-modal choice reaction time paradigm. European Neuropsychopharmacology, 24, 1828–1835. 10.1016/j.euroneuro.2014.09.002 First citation in articleCrossref MedlineGoogle Scholar

  • Schlotz, W., Kumsta, R., Layes, I., Entringer, S., Jones, A., & Wüst, S. (2008). Covariance between psychological and endocrine responses to pharmacological challenge and psychosocial stress: A question of timing. Psychosomatic Medicine, 70, 787–796. 10.1097/psy.0b013e3181810658 First citation in articleCrossref MedlineGoogle Scholar

  • Schoofs, D., Wolf, O. T., & Smeets, T. (2009). Cold pressor stress impairs performance on working memory tasks requiring executive functions in healthy young men. Behavioral Neuroscience, 123, 1066–1075. 10.1037/a0016980 First citation in articleCrossref MedlineGoogle Scholar

  • Schulz, A., Reichert, C. F., Richter, S., Lass-Hennemann, J., Blumenthal, T. D., & Schaechinger, H. (2009). Cardiac modulation of startle: Effects on eye blink and higher cognitive processing. Brain and Cognition, 71, 265–271. 10.1016/j.bandc.2009.08.002 First citation in articleCrossref MedlineGoogle Scholar

  • Schwabe, L., Schächinger, H., de Kloet, E. R., & Oitzl, M. S. (2010). Corticosteroids operate as a switch between memory systems. Journal of Cognitive Neuroscience, 22, 1362–1372. 10.1162/jocn.2009.21278 First citation in articleCrossref MedlineGoogle Scholar

  • Shields, G. S., Sazma, M. A., & Yonelinas, A. P. (2016). The effects of acute stress on core executive functions: A meta-analysis and comparison with cortisol. Neuroscience & Biobehavioral Reviews, 68, 651–668. 10.1016/j.neubiorev.2016.06.038 First citation in articleCrossref MedlineGoogle Scholar

  • Starcke, K., Wiesen, C., Trotzke, P., & Brand, M. (2016). Effects of acute laboratory stress on executive functions. Frontiers in Psychology, 7, 461. 10.3389/fpsyg.2016.00461 First citation in articleCrossref MedlineGoogle Scholar

  • Svensson, T. H. (1987). Peripheral, autonomic regulation of locus coeruleus noradrenergic neurons in brain: Putative implications for psychiatry and psychopharmacology. Psychopharmacology, 92(1), 1–7. 10.1007/bf00215471 First citation in articleCrossref MedlineGoogle Scholar

  • Talke, P., Lobo, E., & Brown, R. (2003). Systemically administered α2-agonist-induced peripheral vasoconstriction in humans. Anesthesiology, 99(1), 65–70. 10.1097/00000542-200307000-00014 First citation in articleCrossref MedlineGoogle Scholar

  • Tam, S. W., Worcel, M., & Wyllie, M. (2001). Yohimbine: A clinical review. Pharmacology & Therapeutics, 91, 215–243. 10.1016/s0163-7258(01)00156-5 First citation in articleCrossref MedlineGoogle Scholar

  • Tapscott, B. E., & Etherton, J. (2015). The effects of cold pressor-induced pain on PASAT performance. Applied Neuropsychology: Adult, 22, 227–232. 10.1080/23279095.2014.910213 First citation in articleCrossref MedlineGoogle Scholar

  • Teigen, K. H. (1994). Yerkes-Dodson: A law for all seasons. Theory & Psychology, 4, 525–547. 10.1177/0959354394044004 First citation in articleCrossrefGoogle Scholar

  • Tombaugh, T. N. (2006). A comprehensive review of the paced auditory serial addition test (PASAT). Archives of Clinical Neuropsychology, 21(1), 53–76. First citation in articleCrossref MedlineGoogle Scholar

  • Unnerstall, J. R., Kopajtic, T. A., & Kuhar, M. J. (1984). Distribution of α2 agonist binding sites in the rat and human central nervous system: Analysis of some functional, anatomic correlates of the pharmacologic effects of clonidine and related adrenergic agents. Brain Research Reviews, 7(1), 69–101. 10.1016/0165-0173(84)90030-4 First citation in articleCrossrefGoogle Scholar

  • Valentino, R. J., & Van Bockstaele, E. (2008). Convergent regulation of locus coeruleus activity as an adaptive response to stress. European Journal of Pharmacology, 583(23), 194–203. 10.1016/j.ejphar.2007.11.062 First citation in articleCrossref MedlineGoogle Scholar

  • Weerink, M. A. S., Struys, M. M. R. F., Hannivoort, L. N., Barends, C. R., Absalom, A. R., & Colin, P. (2017). Clinical pharmacokinetics and pharmacodynamics of dexmedetomidine. Clinical Pharmacokinetics, 56, 893–913. 10.1007/s40262-017-0507-7 First citation in articleCrossref MedlineGoogle Scholar

  • Williams, C. L., Men, D., Clayton, E. C., & Gold, P. E. (1998). Norepinephrine release in the amygdala after systemic injection of epinephrine or escapable footshock: Contribution of the nucleus of the solitary tract. Behavioral Neuroscience, 112, 1414–1422. 10.1037/0735-7044.112.6.1414 First citation in articleCrossref MedlineGoogle Scholar

  • Yerkes, R. M., & Dodson, J. D. (1908). The relation of strength of stimulus to rapidity of habit‐formation. Journal of Comparative Neurology and Psychology, 18, 459–482. 10.1002/cne.920180503 First citation in articleCrossrefGoogle Scholar

  • Zornow, M. H., Maze, M., Dyck, J. B., & Shafer, S. L. (1993). Dexmedetomidine decreases cerebral blood flow velocity in humans. Journal of Cerebral Blood Flow & Metabolism, 13, 350–353. 10.1038/jcbfm.1993.45 First citation in articleCrossref MedlineGoogle Scholar