Skip to main content
Log in

Material-Sparing and Expedited Development of a Tablet Formulation of Carbamazepine Glutaric Acid Cocrystal– a QbD Approach

  • RESEARCH PAPER
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To efficiently develop a tablet formulation of carbamazepine using a soluble cocrystal with excess coformer to maintain phase stability during dissolution.

Methods

The carbamazepine – glutaric acid cocrystal (CBZ-GLA, 1:1) and excess glutaric acid (GLA) were mixed with suitable tablet excipients, which were selected to address powder flowability and tabletability deficiencies specifically. Tablet friability and dissolution profiles were evaluated to guide formulation optimization. Dry granules were prepared by milling simulated ribbons.

Results

A binary blend of CBZ-GLA and GLA had poor flowability and marginal tabletability. Therefore, silica coated Avicel PH-102 (sMCC) was applied as a binder to improve the flow property and tabletability. A formulation consisting of sMCC, CBZ-GLA, and GLA exhibited good manufacturability but did not show improved dissolution because of rapid precipitation of CBZ dihydrate when CBZ-GLA came in contact with water. Dry granulation of CBZ-GLA and GLA dramatically improved dissolution profile due to the intimate contact between CBZ-GLA and GLA. Such cocrystal - coformer granules also led to much improved tablet manufacturability and dissolution.

Conclusion

The successful tablet development of CBZ-GLA, using < 3 g of the cocrystal in <3 weeks, demonstrates an efficient workflow for tablet formulation development based on material-sparing and predictive powder characterization techniques. This workflow is useful for early tablet development using enabling solid form, such as cocrystal, when only a small amount of material is available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CBZ-GLA :

Carbamazepine glutaric acid cocrystal

CBZ :

Carbamazepine

GLA :

Glutaric acid

PXRD :

Powder X-ray diffraction

References

  1. Leuenberger H, Lanz M. Pharmaceutical powder technology - from art to science: the challenge of the FDA’s process analytical technology initiative. Adv Powder Technol. 2005;16(1):3–25.

    Article  CAS  Google Scholar 

  2. Sun CC. Materials science tetrahedron-a useful tool for pharmaceutical research and development. J Pharm Sci. 2009;98(5):1671–87.

    Article  CAS  PubMed  Google Scholar 

  3. FDA. Final Report on Pharmaceutical cGMPs for the 21st Century—A Risk-Based Approach. Available from: http://www.fda.gov/cder/gmp/gmp2004/GMP_finalreport2004.htm.

  4. FDA. Critical path opportunities for generic drugs. Available from: http://www.fda.gov/oc/initiatives/criticalpath/reports/generic.html.

  5. Craig DQM. Pharmaceutical materials science - resuscitation or reincarnation? J Pharm Pharmacol. 1997;49(2):119–26.

    Article  CAS  PubMed  Google Scholar 

  6. Cui Y. A material science perspective of pharmaceutical solids. Int J Pharm. 2007;339(1–2):3–18.

    Article  CAS  PubMed  Google Scholar 

  7. Wassgren C, Curtis JS. The application of computational modeling to pharmaceutical materials science. MRS Bull. 2006;31(11):900–4.

    Article  CAS  Google Scholar 

  8. Shah P. Use of nanotechnologies for drug delivery. MRS Bull. 2006;31(11):894–9.

    Article  CAS  Google Scholar 

  9. Sun CC, Hou H, Gao P, Ma C, Medina C, Alvarez FJ. Development of a high drug load tablet formulation based on assessment of powder manufacturability: moving towards quality by design. J Pharm Sci. 2009;98(1):239–47.

    Article  CAS  PubMed  Google Scholar 

  10. Osei-Yeboah F, Sun CC. Validation and applications of an expedited tablet friability method. Int J Pharm. 2015;484(1–2):146–55.

    Article  CAS  PubMed  Google Scholar 

  11. Sun CC. Setting the bar for powder flow properties in successful high speed tableting. Powder Technol. 2010;201(1):106–8.

    Article  CAS  Google Scholar 

  12. Serajuddin ATM. Salt formation to improve drug solubility. Adv Drug Del Rev. 2007;59(7):603–16.

    Article  CAS  Google Scholar 

  13. Konno H, Handa T, Alonzo DE, Taylor LS. Effect of polymer type on the dissolution profile of amorphous solid dispersions containing felodipine. Eur J Pharm Biopharm. 2008;70(2):493–9.

    Article  CAS  PubMed  Google Scholar 

  14. Demuth B, Nagy ZK, Balogh A, Vigh T, Marosi G, Verreck G, et al. Downstream processing of polymer-based amorphous solid dispersions to generate tablet formulations. Int J Pharm. 2015;486(1–2):268–86.

    Article  CAS  PubMed  Google Scholar 

  15. Duggirala NK, Perry ML, Almarsson O, Zaworotko MJ. Pharmaceutical cocrystals: along the path to improved medicines. Chem Commun. 2016;52(4):640–55.

    Article  CAS  Google Scholar 

  16. Tajarobi F, Larsson A, Matic H, Abrahmsen-Alami S. The influence of crystallization inhibition of HPMC and HPMCAS on model substance dissolution and release in swellable matrix tablets. Eur J Pharm Biopharm. 2011;78(1):125–33.

    Article  CAS  PubMed  Google Scholar 

  17. Yamashita H, Sun CQC. Self-templating accelerates precipitation of carbamazepine dihydrate during the dissolution of a soluble carbamazepine cocrystal. Cryst Eng Comm. 2017;19(8):1156–9.

    Article  CAS  Google Scholar 

  18. Yamashita H, Sun CC. Harvesting potential dissolution advantages of soluble cocrystals by depressing precipitation using the common coformer effect. Cryst Growth Des. 2016;16(12):6719–21.

    Article  CAS  Google Scholar 

  19. Yamashita H, Sun CC. Improving dissolution rate of carbamazepine-glutaric acid cocrystal through solubilization by excess coformer. Pharm Res. 2018;35(1):4.

    Article  Google Scholar 

  20. Yamashita H, Sun CC. Expedited tablet formulation development of a highly soluble carbamazepine cocrystal enabled by precipitation inhibition in diffusion layer. Pharm Res. 2019;36(6):90.

    Article  PubMed  Google Scholar 

  21. Childs SL, Rodriguez-Hornedo N, Reddy LS, Jayasankar A, Maheshwari C, McCausland L, et al. Screening strategies based on solubility and solution composition generate pharmaceutically acceptable cocrystals of carbamazepine. Cryst Eng Comm. 2008;10(7):856–64.

    Article  CAS  Google Scholar 

  22. Hou H, Sun CC. Quantifying effects of particulate properties on powder flow properties using a ring shear tester. J Pharm Sci. 2008;97(9):4030–9.

    Article  CAS  PubMed  Google Scholar 

  23. Sun CC. Quantifying effects of moisture content on flow properties of microcrystalline cellulose using a ring shear tester. Powder Technol. 2016;289:104–8.

    Article  CAS  Google Scholar 

  24. Zhou Q, Shi LM, Chattoraj S, Sun CC. Preparation and characterization of surface-engineered coarse microcrystalline cellulose through dry coating with silica nanoparticles. J Pharm Sci. 2012;101(11):4258–66.

    Article  CAS  PubMed  Google Scholar 

  25. USP. General Chapters In.Tablet friability. Rockville, MD United States Pharmacopoeial Convention; 2014.

  26. JP. G6: Tablet friability test. In. Japan: Minister of Health, Labour and Welfare; 2011.

  27. Ph. Eur. 2.9.7: Friability of uncoated tablets. In.: European Directorate for the Quality of Medicine and Health (EDQM); 2013.

  28. Banga S, Chawla G, Varandani D, Mehta BR, Bansal AK. Modification of the crystal habit of celecoxib for improved processability. J Pharm Pharmacol. 2007;59(1):29–39.

    Article  CAS  PubMed  Google Scholar 

  29. Thakur A, Thipparaboina R, Kumar D, Gouthami KS, Shastri NR. Crystal engineered albendazole with improved dissolution and material attributes. Cryst Eng Comm. 2016;18(9):1489–94.

    Article  CAS  Google Scholar 

  30. Garekani HA, Sadeghi F, Badiee A, Mostafa SA, Rajabi-Siahboomi AR. Crystal habit modifications of ibuprofen and their physicomechanical characteristics. Drug Dev Ind Pharm. 2001;27(8):803–9.

    Article  CAS  PubMed  Google Scholar 

  31. Kawashima Y, Imai A, Takeuchi H, Yamamoto H, Kamiya K, Hino T. Improved flowability and compactibility of spherically agglomerated crystals of ascorbic acid for direct tableting designed by spherical crystallization process. Powder Technol. 2003;130(1–3):283–9.

    Article  CAS  Google Scholar 

  32. Kawashima Y, Okumura M, Takenaka H. Spherical crystallization - direct spherical agglomeration of salicylic-acid crystals during crystallization. Science. 1982;216(4550):1127–8.

    Article  CAS  PubMed  Google Scholar 

  33. Kumar S, Chawla G, Bansal AK. Spherical crystallization of mebendazole to improve processability. Pharm Dev Technol. 2008;13(6):559–68.

    Article  CAS  PubMed  Google Scholar 

  34. Katta J, Rasmuson AC. Spherical crystallization of benzoic acid. Int J Pharm. 2008;348(1–2):61–9.

    Article  CAS  PubMed  Google Scholar 

  35. Chattoraj S, Shi LM, Sun CC. Profoundly improving flow properties of a cohesive cellulose powder by surface coating with nano-silica through comilling. J Pharm Sci. 2011;100(11):4943–52.

    Article  CAS  PubMed  Google Scholar 

  36. Huang ZH, Scicolone JV, Gurumuthy L, Dave RN. Flow and bulk density enhancements of pharmaceutical powders using a conical screen mill: a continuous dry coating device. Chem Eng Sci. 2015;125:209–24.

    Article  CAS  Google Scholar 

  37. Huang ZG, Scicolone JV, Han X, Dave RN. Improved blend and tablet properties of fine pharmaceutical powders via dry particle coating. Int J Pharm. 2015;478(2):447–55.

    Article  CAS  PubMed  Google Scholar 

  38. Ramlakhan M, Wu CY, Watano S, Dave RN, Pfeffer R. Dry particle coating using magnetically assisted impaction coating: modification of surface properties and optimization of system and operating parameters. Powder Technol. 2000;112(1–2):137–48.

    Article  CAS  Google Scholar 

  39. Zhou Q, Qu L, Gengenbach T, Denman JA, Larson I, Stewart PJ, et al. Investigation of the extent of surface coating via mechanofusion with varying additive levels and the influences on bulk powder flow properties. Int J Pharm. 2011;413(1–2):36–43.

    Article  CAS  PubMed  Google Scholar 

  40. Sun CC. A classification system for tableting behaviors of binary powder mixtures. Asian J Pharm Sci. 2016;11(4):486–91.

    Article  Google Scholar 

  41. Sun CC, Himmelspach MW. Reduced tabletability of roller compacted granules as a result of granule size enlargement. J Pharm Sci. 2006;95(1):200–6.

    Article  CAS  PubMed  Google Scholar 

  42. Leung LY, Mao C, Pieters SR, Yang C-Y. A proposed complete methodology to predict gravity flow obstruction of pharmaceutical powders in drug product manufacturing. J Pharm Sci. 2019;108(1):464–75.

    Article  CAS  PubMed  Google Scholar 

  43. Dokoumetzidis A, Macheras P. A century of dissolution research: from Noyes and Whitney to the biopharmaceutics classification system. Int J Pharm. 2006;321(1–2):1–11.

    Article  CAS  PubMed  Google Scholar 

  44. Hawley M, Morozowich W. Modifying the diffusion layer of soluble salts of poorly soluble basic drugs to improve dissolution performance. Mol Pharm. 2010;7(5):1441–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements and Disclosures

Parts of this work were carried out in the Characterization Facility, University of Minnesota, a member of the NSF-funded Materials Research Facilities Network (http://www.mrfn.org) through the UMN MRSEC (DMR-1420013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changquan Calvin Sun.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamashita, H., Sun, C.C. Material-Sparing and Expedited Development of a Tablet Formulation of Carbamazepine Glutaric Acid Cocrystal– a QbD Approach. Pharm Res 37, 153 (2020). https://doi.org/10.1007/s11095-020-02855-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-020-02855-3

Key Words

Navigation