Skip to main content
Log in

Caspase-Based PET for Evaluating Pro-Apoptotic Treatments in a Tuberculosis Mouse Model

  • Brief Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Despite recent advances in antimicrobial treatments, tuberculosis (TB) remains a major global health threat. Mycobacterium tuberculosis proliferates in macrophages, preventing apoptosis by inducing anti-apoptotic proteins leading to necrosis of the infected cells. Necrosis then leads to increased tissue destruction, reducing the penetration of antimicrobials and immune cells to the areas where they are needed most. Pro-apoptotic drugs could be used as host-directed therapies in TB to improve antimicrobial treatments and patient outcomes.

Procedure

We evaluated [18F]-ICMT-11, a caspase-3/7-specific positron emission tomography (PET) radiotracer, in macrophage cell cultures and in an animal model of pulmonary TB that closely resembles human disease.

Results

Cells infected with M. tuberculosis and treated with cisplatin accumulated [18F]-ICMT-11 at significantly higher levels compared with that of controls, which correlated with levels of caspase-3/7 activity. Infected mice treated with cisplatin with increased caspase-3/7 activity also had a higher [18F]-ICMT-11 PET signal compared with that of untreated infected animals.

Conclusions

[18F]-ICMT-11 PET could be used as a noninvasive approach to measure intralesional pro-apoptotic responses in situ in pulmonary TB models and support the development of pro-apoptotic host-directed therapies for TB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. World Health Organization (2019) Global Tuberculosis Report. WHO, Geneva

    Google Scholar 

  2. Sly LM, Hingley-Wilson SM, Reiner NE, McMaster WR (2003) Survival of Mycobacterium tuberculosis in host macrophages involves resistance to apoptosis dependent upon induction of antiapoptotic Bcl-2 family member Mcl-1. J Immunol 170:430–437

    Article  CAS  Google Scholar 

  3. Gan H, Lee J, Ren F, Chen M, Kornfeld H, Remold HG (2008) Mycobacterium tuberculosis blocks crosslinking of annexin-1 and apoptotic envelope formation on infected macrophages to maintain virulence. Nat Immunol 9:1189–1197

    Article  CAS  Google Scholar 

  4. Ordonez AA, Wang H, Magombedze G, Ruiz-Bedoya CA, Srivastava S, Chen A, Tucker EW, Urbanowski ME, Pieterse L, Cardozo EF, Lodge MA, Shah MR, Holt DP, Mathews WB, Dannals RF, Gobburu JVS, Peloquin CA, Rowe SP, Gumbo T, Ivaturi VD, Jain SK (2020) Dynamic imaging in tuberculosis patients reveals heterogeneous drug exposures in pulmonary lesions. Nat Med:1–6. https://doi.org/10.1038/s41591-020-0770-2

  5. Wang Q, Liu S, Tang Y, Liu Q, Yao Y (2014) MPT64 protein from Mycobacterium tuberculosis inhibits apoptosis of macrophages through NF-kB-miRNA21-Bcl-2 pathway. PLoS One 9:e100949

    Article  Google Scholar 

  6. Zhao X, Khan N, Gan H, Tzelepis F, Nishimura T, Park SY, Divangahi M, Remold HG (2017) Bcl-xL mediates RIPK3-dependent necrosis in M. tuberculosis-infected macrophages. Mucosal Immunol 10:1553–1568

    Article  CAS  Google Scholar 

  7. Ordonez AA, Maiga M, Gupta S, Weinstein E, Bishai WR, Jain SK (2014) Novel adjunctive therapies for the treatment of tuberculosis. Curr Mol Med 14:385–395

    Article  CAS  Google Scholar 

  8. Ordonez AA, Pokkali S, Kim S et al (2018) Adjunct antibody administration with standard treatment reduces relapse rates in a murine tuberculosis model of necrotic granulomas. PLoS One 13:e0197474

    Article  Google Scholar 

  9. Ordonez AA, Pokkali S, Sanchez-Bautista J, Klunk MH, Urbanowski ME, Kübler A, Bishai WR, Elkington PT, Jain SK (2019) Matrix metalloproteinase inhibition in a murine model of cavitary tuberculosis paradoxically worsens pathology. J Infect Dis 219:633–636

    Article  CAS  Google Scholar 

  10. Singh R, Letai A, Sarosiek K (2019) Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol 20:175–193

    Article  CAS  Google Scholar 

  11. Ordonez AA, Pokkali S, DeMarco VP, Klunk M, Mease RC, Foss CA, Pomper MG, Jain SK (2015) Radioiodinated DPA-713 imaging correlates with bactericidal activity of tuberculosis treatments in mice. Antimicrob Agents Chemother 59:642–649

    Article  Google Scholar 

  12. Ordonez AA, Tasneen R, Pokkali S, Xu Z, Converse PJ, Klunk MH, Mollura DJ, Nuermberger EL, Jain SK (2016) Mouse model of pulmonary cavitary tuberculosis and expression of matrix metalloproteinase-9. Dis Model Mech 9:779–788

    Article  CAS  Google Scholar 

  13. Nguyen Q-D, Smith G, Glaser M, Perumal M, Årstad E, Aboagye EO (2009) Positron emission tomography imaging of drug-induced tumor apoptosis with a caspase-3/7 specific [18F]-labeled isatin sulfonamide. Proc Natl Acad Sci U S A 106:16375–16380

    Article  CAS  Google Scholar 

  14. Dubash SR, Merchant S, Heinzmann K, Mauri F, Lavdas I, Inglese M, Kozlowski K, Rama N, Masrour N, Steel JF, Thornton A, Lim AK, Lewanski C, Cleator S, Coombes RC, Kenny L, Aboagye EO (2018) Clinical translation of [18F]ICMT-11 for measuring chemotherapy-induced caspase 3/7 activation in breast and lung cancer. Eur J Nucl Med Mol Imaging 45:2285–2299

    Article  CAS  Google Scholar 

  15. Fortt R, Smith G, Awais RO, Luthra SK, Aboagye EO (2012) Automated GMP synthesis of [18F] ICMT-11 for in vivo imaging of caspase-3 activity. Nucl Med Biol 39:1000–1005

    Article  CAS  Google Scholar 

  16. Witney TH, Fortt RR, Aboagye EO (2014) Preclinical assessment of carboplatin treatment efficacy in lung cancer by 18F-ICMT-11-positron emission tomography. PLoS One 9:e91694

    Article  Google Scholar 

  17. Yang M, Chen P, Liu J et al (2019) Clockophagy is a novel selective autophagy process favoring ferroptosis. Sci Adv 5:eaaw2238

    Article  CAS  Google Scholar 

  18. Weinstein E, Liu L, Ordonez A, Wang H, Hooker JM, Tonge PJ, Jain SK (2012) Noninvasive determination of 2-[18F]-fluoroisonicotinic acid hydrazide pharmacokinetics by positron emission tomography in Mycobacterium tuberculosis-infected mice. Antimicrob Agents Chemother 56:6284–6290

    Article  CAS  Google Scholar 

  19. Prideaux B, Via LE, Zimmerman MD, Eum S, Sarathy J, O'Brien P, Chen C, Kaya F, Weiner DM, Chen PY, Song T, Lee M, Shim TS, Cho JS, Kim W, Cho SN, Olivier KN, Barry CE 3rd, Dartois V (2015) The association between sterilizing activity and drug distribution into tuberculosis lesions. Nat Med 21:1223–1227

    Article  CAS  Google Scholar 

  20. Kaczmarek A, Vandenabeele P, Krysko DV (2013) Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity 38:209–223

    Article  CAS  Google Scholar 

  21. Ernst JD (2012) The immunological life cycle of tuberculosis. Nat Rev Immunol 12:581–591

    Article  CAS  Google Scholar 

  22. Perrin FM, Woodward N, Phillips PP, McHugh T, Nunn AJ, Lipman MC, Gillespie SH (2010) Radiological cavitation, sputum mycobacterial load and treatment response in pulmonary tuberculosis. Int J Tuberc Lung Dis 14:1596–1602

    CAS  PubMed  Google Scholar 

  23. Torrado E, Robinson RT, Cooper AM (2011) Cellular response to mycobacteria: balancing protection and pathology. Trends Immunol 32:66–72

    Article  CAS  Google Scholar 

  24. Nguyen Q-D, Challapalli A, Smith G, Fortt R, Aboagye EO (2012) Imaging apoptosis with positron emission tomography: ‘bench to bedside’ development of the caspase-3/7 specific radiotracer [18F] ICMT-11. Eur J Cancer 48:432–440

    Article  CAS  Google Scholar 

  25. Taylor RC, Cullen SP, Martin SJ (2008) Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 9:231–241

    Article  CAS  Google Scholar 

  26. Nguyen Q-D, Lavdas I, Gubbins J, Smith G, Fortt R, Carroll LS, Graham MA, Aboagye EO (2013) Temporal and spatial evolution of therapy-induced tumor apoptosis detected by caspase-3–selective molecular imaging. Clin Cancer Res 19:3914–3924

    Article  CAS  Google Scholar 

  27. Smith G, Glaser M, Perumal M, Nguyen QD, Shan B, Arstad E, Aboagye EO (2008) Design, synthesis, and biological characterization of a caspase 3/7 selective isatin labeled with 2-[18F]fluoroethylazide. J Med Chem 51:8057–8067

    Article  CAS  Google Scholar 

  28. Vassileva V, Stribbling SM, Barnes C, Carroll L, Braga M, Abrahams J, Heinzmann K, Haegeman C, MacFarlane M, Simpson KL, Dive C, Honeychurch J, Illidge TM, Aboagye EO (2019) Evaluation of apoptosis imaging biomarkers in a genetic model of cell death. EJNMMI Res 9:18

  29. Challapalli A, Kenny LM, Hallett WA, Kozlowski K, Tomasi G, Gudi M, al-Nahhas A, Coombes RC, Aboagye EO (2013) 18F-ICMT-11, a caspase-3–specific PET tracer for apoptosis: biodistribution and radiation dosimetry. J Nucl Med 54:1551–1556

    Article  CAS  Google Scholar 

  30. Fisher DE (1994) Apoptosis in cancer therapy: crossing the threshold. Cell 78:539–542

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Institutes of Health Director’s Transformative Research Award R01-EB020539 (SKJ). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Laurence Carroll or Sanjay K. Jain.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ordonez, A.A., Abhishek, S., Singh, A.K. et al. Caspase-Based PET for Evaluating Pro-Apoptotic Treatments in a Tuberculosis Mouse Model. Mol Imaging Biol 22, 1489–1494 (2020). https://doi.org/10.1007/s11307-020-01494-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-020-01494-9

Key words

Navigation