Skip to main content
Log in

Enantioselective synthesis of a chiral intermediate of himbacine analogs by Burkholderia cepacia lipase A

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

The enantiomers of (4R/S)-4-hydroxy-N, N-diphenyl-2-pentynamide are key chiral synthons for the synthesis of thrombin receptor antagonists such as vorapaxar. In this paper, we report the enzymatic preparation of enantiomerically enriched (4R)-4-hydroxy-N, N-diphenyl-2-pentynamide using lipase A from Burkholderia cepacia ATCC 25416 as the catalyst. First, the lipase gene (lipA) and its chaperone gene (lipB) was cloned and expressed in Escherichia coli system. After purification, lipase A activation was performed with the assistance of foldase lipase B. Enzyme assay revealed that the activated lipase A showed the optimal catalytic activity at 60 ºC and pH 7. The effects of various metals on the activity were investigated and results demonstrated that most of the metals inhibited the activity. To further improve the catalytic outcome, two-phase reaction was studied, and n-hexane proved to be a good organic solvent for the combination system. Using the optimize conditions, (4R)-4-hydroxy-N, N-diphenyl-2-pentynamide with 94.5% ee value and 48.93% conversion ratio was achieved. Our investigation on this lipase reveals lipase A as a promising biocatalyst for producing chiral propargyl alcohol for preparation of novel himbacine analogs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bailey AL, Campbell CL (2011) Oral antiplatelet therapy for acute coronary syndromes: aspirin, P2Y12 inhibition and thrombin receptor antagonists. Curr Drug Targets 12:1805–1812

    Article  CAS  Google Scholar 

  • Chackalamannil S (2006) Thrombin receptor (protease activated receptor-1) antagonists as potent antithrombotic agents with strong antiplatelet effects. J Med Chem 49:5389–5403

    Article  CAS  Google Scholar 

  • Chelliah MV et al (2014) Himbacine-derived thrombin receptor antagonists: c7-aminomethyl and c9a-hydroxy analogues of vorapaxar. ACS Med Chem Lett 5:183–187

    Article  CAS  Google Scholar 

  • Clasby MC et al (2007) Metabolism-based identification of a potent thrombin receptor antagonist. J Med Chem 50:129–138

    Article  CAS  Google Scholar 

  • El Khattabi M, Van Gelder P, Bitter W, Tommassen J (2000) Role of the lipase-specific foldase of Burkholderia glumae as a steric chaperone. J Biol Chem 275:26885–26891

    PubMed  Google Scholar 

  • Faraji H, Soltani F, Ramezani M, Sadeghnia HR, Nedaeinia R, Benhangi HM, Mashkani B (2020) Designing a multifunctional staphylokinase variant (SAK-2RGD-TTI) with appropriate thrombolytic activity in vitro. Biotechnol Lett 42:103–114

    Article  CAS  Google Scholar 

  • Floyd MB et al (1980) Prostaglandins and congeners. 22. Synthesis of 11-substituted derivatives of 11-deoxyprostaglandins E1 and E2. Potential bronchodilators. J Med Chem 23:903–913

    Article  CAS  Google Scholar 

  • Gao S, Zhu S, Huang R, Lu Y, Zheng G (2015) Efficient synthesis of the intermediate of abacavir and carbovir using a novel (+)-γ-lactamase as a catalyst. Bioorg Med Chem Lett 25:3878–3881

    Article  CAS  Google Scholar 

  • Gao S, Huang R, Zhu S, Li H, Zheng G (2016) Identification and characterization of a novel (+)-γ-lactamase from Microbacterium hydrocarbonoxydans. Appl Microbiol Biotechnol 100:9543–9553

    Article  CAS  Google Scholar 

  • Gao S et al (2017) Structural insights into the γ-lactamase activity and substrate enantioselectivity of an isochorismatase-like hydrolase from Microbacterium hydrocarbonoxydans. Sci Rep 7:44542

    Article  Google Scholar 

  • Gao S, Zhu S, Huang R, Li H, Wang H, Zheng G (2018) Engineering the enantioselectivity and thermostability of a (+)-γ-lactamase from Microbacterium hydrocarbonoxydans for kinetic resolution of vince lactam (2-azabicyclo [2.2. 1] hept-5-en-3-one). Appl Environ Microbiol. https://doi.org/10.1128/AEM.01780-17

    Article  PubMed  PubMed Central  Google Scholar 

  • Goto S, Goto S (2015) Selection of a suitable patient population for new antiplatelet therapy from the large clinical trial database of the thrombin receptor antagonist in secondary prevention of atherothrombotic ischemic events-thrombolysis in myocardial infarction 50 (TRA-2P-TIMI50) trial. Circulation 131:1041–1043

    Article  Google Scholar 

  • Kahveci D, Xu X (2011) Enhancement of activity and selectivity of Candida rugosa lipase and Candida antarctica lipase A by bioimprinting and/or immobilization for application in the selective ethanolysis of fish oil. Biotechnol Lett 33:2065–2071

    Article  CAS  Google Scholar 

  • Knight E et al (2016) Synthesis of novel and potent vorapaxar analogues. Org Biomol Chem 14:3264–3274. https://doi.org/10.1039/c5ob02541a

    Article  CAS  PubMed  Google Scholar 

  • Kranen E, Detzel C, Weber T, Jose J (2014) Autodisplay for the co-expression of lipase and foldase on the surface of E. coli: washing with designer bugs. Microb Cell Fact 13:19

    Article  Google Scholar 

  • Kumar A, Dhar K, Kanwar SS, Arora PK (2016) Lipase catalysis in organic solvents: advantages and applications. Biol Proced Online 18:2

    Article  Google Scholar 

  • Li T, Tamarez M, Zaks A (2006) Preparation of chiral propargylic alcohol and ester intermediates of himbacine analogs. Google Patents

  • Madan B, Mishra P (2010) Co-expression of the lipase and foldase of Pseudomonas aeruginosa to a functional lipase in Escherichia coli. Appl Microbiol Biotechnol 85:597–604

    Article  CAS  Google Scholar 

  • Olivier C, Diehl P, Bode C, Moser M (2013) Thrombin receptor antagonism in antiplatelet therapy. Cardiol Ther 2:57–68

    Article  CAS  Google Scholar 

  • Omori K, Isoyama-Tanaka J, Ihara F, Yamada Y, Nihira T (2005) Active lactonizing lipase (LipL) efficiently overproduced by Pseudomonas strains as heterologous expression hosts. J Biosci Bioeng 100:323–330

    Article  CAS  Google Scholar 

  • Oshima-Hirayama N, Yoshikawa K, Nishioka T, Ji O (1993) Lipase from Pseudomonas aeruginosa: production in Escherichia coli and activation in vitro with a protein from the downstream gene. Eur J Biochem 215:239–246

    Article  CAS  Google Scholar 

  • Padilha GS, Osorio WR (2019) Economic method for extraction/purification of a Burkholderia cepacia lipase with potential biotechnology application. Appl Biochem Biotechnol 189:1108–1126

    Article  CAS  Google Scholar 

  • Sanchez DA, Tonetto GM, Ferreira ML (2018) Burkholderia cepacia lipase: A versatile catalyst in synthesis reactions. Biotechnol Bioeng 115:6–24

    Article  CAS  Google Scholar 

  • Santos R, Caldeira J, Pinheiro H, Cabral J (1991) Steroid bioconversion in a novel aqueous two-phase system. Biotechnol Lett 13:349–354

    Article  CAS  Google Scholar 

  • Sasso F, Natalello A, Castoldi S, Lotti M, Santambrogio C, Grandori R (2016) Burkholderia cepacia lipase is a promising biocatalyst for biofuel production. Biotechnol J 11:954–960

    Article  CAS  Google Scholar 

  • Schmid RD, Verger R (1998) Lipases: interfacial enzymes with attractive applications. Angew Chem Int Ed Engl 37:1608–1633

    Article  Google Scholar 

  • Shin K-C, Kang W-R, Seo M-J, Kim DW, Oh D-K (2019) Production of 8S-and 10S-hydroxy polyunsaturated fatty acids by recombinant Escherichia coli cells expressing mouse arachidonate 8S-lipoxygenase. Biotechnol Lett 41:575–582

    Article  CAS  Google Scholar 

  • Tasnádi G, Forró E, Fülöp F (2009) Burkholderia cepacia lipase is an excellent enzyme for the enantioselective hydrolysis of β-heteroaryl-β-amino esters. Tetrahedron Asymmetry 20:1771–1777

    Article  Google Scholar 

  • Tello-Montoliu A, Tomasello SD, Ueno M, Angiolillo DJ (2011) Antiplatelet therapy: thrombin receptor antagonists. Br J Clin Pharmacol 72:658–671

    Article  CAS  Google Scholar 

  • Theil F, Björkling F (1993) Specificity of Candida antarctica lipase B (SP 435) in the presence of lipase A in a double enantioselective transesterification. Biotechnol Lett 15:605–608

    Article  CAS  Google Scholar 

  • Wissner A (1977) Prostaglandins and congeners. 11. Synthesis of dl-13-hydroxyprostanoic acids. J Org Chem 42:356–358

    Article  CAS  Google Scholar 

  • Yamazaki Y, Hosono K (1989) Stereoselective microbial reduction of planar chiral and prochiral organometallic aldehydes. Biotechnol Lett 11:679–684

    Article  CAS  Google Scholar 

  • Zaks A, Tamarez M, Li T (2009) Convergent synthesis of both enantiomers of 4-hydroxypent-2-ynoic acid diphenylamide for a thrombin receptor antagonist sch 530348 and himbacine analogues. Adv Synth Catal 351:2351–2357

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We express our appreciation to Huijiao Wen from Beijing University of Chemical Technology for insightful discussions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuaihua Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Gao, F., Zheng, G. et al. Enantioselective synthesis of a chiral intermediate of himbacine analogs by Burkholderia cepacia lipase A. Biotechnol Lett 42, 2643–2651 (2020). https://doi.org/10.1007/s10529-020-02969-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-020-02969-z

Keywords

Navigation