1932

Abstract

Amyloids are implicated in many protein misfolding diseases. Amyloid folds, however, also display a range of functional roles particularly in the microbial world. The templating ability of these folds endows them with specific properties allowing their self-propagation and protein-to-protein transmission in vivo. This property, the prion principle, is exploited by specific signaling pathways that use transmission of the amyloid fold as a way to convey information from a receptor to an effector protein. I describe here amyloid signaling pathways involving fungal nucleotide binding and oligomerization domain (NOD)-like receptors that were found to control nonself recognition and programmed cell death processes. Studies on these fungal amyloid signaling motifs stem from the characterization of the fungal [Het-s] prion protein and have led to the identification in fungi but also in multicellular bacteria of several distinct families of signaling motifs, one of which is related to RHIM [receptor-interacting protein (RIP) homotypic interaction motif], an amyloid motif regulating mammalian necroptosis.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-011320-013555
2020-09-08
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/74/1/annurev-micro-011320-013555.html?itemId=/content/journals/10.1146/annurev-micro-011320-013555&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Aanen DK, Debets AJM, Glass NL, Saupe SJ 2010. Biology and genetics of vegetative incompatibility in fungi. Cellular and Molecular Biology of Filamentous Fungi KA Borkovich, DJ Ebbole 274–88 Washington, DC: ASM Press
    [Google Scholar]
  2. 2. 
    Adachi H, Contreras M, Harant A, Wu CH, Derevnina L et al. 2019. An N-terminal motif in NLR immune receptors is functionally conserved across distantly related plant species. eLife 8:e49956
    [Google Scholar]
  3. 3. 
    Ahmed AB, Znassi N, Chateau MT, Kajava AV 2014. A structure-based approach to predict predisposition to amyloidosis. Alzheimer's Dement 11:681–90
    [Google Scholar]
  4. 4. 
    Armaleo D, Muller O, Lutzoni F, Andresson OS, Blanc G et al. 2019. The lichen symbiosis re-viewed through the genomes of Cladoniagrayi and its algal partner Asterochlorisglomerata. BMC Genom 20:605
    [Google Scholar]
  5. 5. 
    Ashe KH, Aguzzi A. 2013. Prions, prionoids and pathogenic proteins in Alzheimer disease. Prion 7:55–59
    [Google Scholar]
  6. 6. 
    Badtke MP, Hammer ND, Chapman MR 2009. Functional amyloids signal their arrival. Sci. Signal. 2:pe43
    [Google Scholar]
  7. 7. 
    Balguerie A, Dos Reis S, Ritter C, Chaignepain S, Coulary-Salin B et al. 2003. Domain organization and structure-function relationship of the HET-s prion protein of Podosporaanserina. EMBO J 22:2071–81
    [Google Scholar]
  8. 8. 
    Beisson-Schecroun J. 1962. Incompatibilité cellulaire et interactions nucléocytoplasmiques dans les phénomènes de barrage chez le Podosporaanserina. Ann. Genet 4:3–50
    [Google Scholar]
  9. 9. 
    Benkemoun L, Ness F, Sabate R, Ceschin J, Breton A et al. 2011. Two structurally similar fungal prions efficiently cross-seed in vivo but form distinct polymers when coexpressed. Mol. Microbiol. 82:1392–405
    [Google Scholar]
  10. 10. 
    Bentham AR, Zdrzalek R, De la Concepcion JC, Banfield MJ 2018. Uncoiling CNLs: structure/function approaches to understanding CC domain function in plant NLRs. Plant Cell Physiol 59:2398–408
    [Google Scholar]
  11. 11. 
    Blanco LP, Evans ML, Smith DR, Badtke MP, Chapman MR 2012. Diversity, biogenesis and function of microbial amyloids. Trends Microbiol 20:66–73
    [Google Scholar]
  12. 12. 
    Boeynaems S, Alberti S, Fawzi NL, Mittag T, Polymenidou M et al. 2018. Protein phase separation: a new phase in cell biology. Trends Cell Biol 28:420–35
    [Google Scholar]
  13. 13. 
    Burdett H, Bentham AR, Williams SJ, Dodds PN, Anderson PA et al. 2019. The plant “resistosome”: structural insights into immune signaling. Cell Host Microbe 26:193–201
    [Google Scholar]
  14. 14. 
    Cai X, Chen J, Xu H, Liu S, Jiang QX et al. 2014. Prion-like polymerization underlies signal transduction in antiviral immune defense and inflammasome activation. Cell 156:1207–22
    [Google Scholar]
  15. 15. 
    Cai X, Chen ZJ. 2014. Prion-like polymerization as a signaling mechanism. Trends Immunol 35:622–30
    [Google Scholar]
  16. 16. 
    Cai X, Xu H, Chen ZJ 2016. Prion-like polymerization in immunity and inflammation. Cold Spring Harb. Perspect. Biol. 9:4a023580
    [Google Scholar]
  17. 17. 
    Chakravarty AK, Smejkal T, Itakura AK, Garcia DM, Jarosz DF 2019. A non-amyloid prion particle that activates a heritable gene expression program. Mol. Cell 77:2251–265.e9
    [Google Scholar]
  18. 18. 
    Chiti F, Dobson CM. 2017. Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade. Annu. Rev. Biochem. 86:27–68
    [Google Scholar]
  19. 19. 
    Choi GH, Dawe AL, Churbanov A, Smith ML, Milgroom MG, Nuss DL 2012. Molecular characterization of vegetative incompatibility genes that restrict hypovirus transmission in the chestnut blight fungus Cryphonectriaparasitica. Genetics 190:113–27
    [Google Scholar]
  20. 20. 
    Colby DW, Prusiner SB. 2011. Prions. Cold Spring Harb. Perspect. Biol. 3:a006833
    [Google Scholar]
  21. 21. 
    Coustou V, Deleu C, Saupe S, Begueret J 1997. The protein product of the het-s heterokaryon incompatibility gene of the fungus Podosporaanserina behaves as a prion analog. PNAS 94:9773–78
    [Google Scholar]
  22. 22. 
    Dalstra HJ, Swart K, Debets AJ, Saupe SJ, Hoekstra RF 2003. Sexual transmission of the [Het-S] prion leads to meiotic drive in Podosporaanserina. PNAS 100:6616–21
    [Google Scholar]
  23. 23. 
    Daskalov A, Dyrka W, Saupe SJ 2015. Theme and variations: evolutionary diversification of the HET-s functional amyloid motif. Sci. Rep. 5:12494
    [Google Scholar]
  24. 24. 
    Daskalov A, Gantner M, Walti MA, Schmidlin T, Chi CN et al. 2014. Contribution of specific residues of the β-solenoid fold to HET-s prion function, amyloid structure and stability. PLOS Pathog 10:e1004158
    [Google Scholar]
  25. 25. 
    Daskalov A, Habenstein B, Martinez D, Debets AJ, Sabate R et al. 2015. Signal transduction by a fungal NOD-like receptor based on propagation of a prion amyloid fold. PLOS Biol 13:e1002059
    [Google Scholar]
  26. 26. 
    Daskalov A, Habenstein B, Sabate R, Berbon M, Martinez D et al. 2016. Identification of a novel cell death-inducing domain reveals that fungal amyloid-controlled programmed cell death is related to necroptosis. PNAS 113:2720–25
    [Google Scholar]
  27. 27. 
    Daskalov A, Paoletti M, Ness F, Saupe SJ 2012. Genomic clustering and homology between HET-S and the NWD2 STAND protein in various fungal genomes. PLOS ONE 7:e34854
    [Google Scholar]
  28. 28. 
    Daskalov A, Saupe SJ. 2015. As a toxin dies a prion comes to life: A tentative natural history of the [Het-s] prion. Prion 9:184–89
    [Google Scholar]
  29. 29. 
    Debets AJ, Dalstra HJ, Slakhorst M, Koopmanschap B, Hoekstra RF, Saupe SJ 2012. High natural prevalence of a fungal prion. PNAS 109:10432–37
    [Google Scholar]
  30. 30. 
    Deleu C, Clave C, Begueret J 1993. A single amino acid difference is sufficient to elicit vegetative incompatibility in the fungus Podosporaanserina. Genetics 135:45–52
    [Google Scholar]
  31. 31. 
    Dobson CM. 2017. The amyloid phenomenon and its links with human disease. Cold Spring Harb. Perspect. Biol. 9:a023648
    [Google Scholar]
  32. 32. 
    Duxbury Z, Ma Y, Furzer OJ, Huh SU, Cevik V et al. 2016. Pathogen perception by NLRs in plants and animals: parallel worlds. BioEssays 38:769–81
    [Google Scholar]
  33. 33. 
    Dyrka W, Coustou V, Daskalov A, Lends A, Bardin T et al. 2020. Identification of NLR-associated amyloid signaling motifs in filamentous bacteria. bioRxiv 2020.01.06.895854
  34. 34. 
    Dyrka W, Lamacchia M, Durrens P, Kobe B, Daskalov A et al. 2014. Diversity and variability of NOD-like receptors in fungi. Genome Biol. Evol. 6:3137–58
    [Google Scholar]
  35. 35. 
    Eichner T, Radford SE. 2011. A diversity of assembly mechanisms of a generic amyloid fold. Mol. Cell 43:8–18
    [Google Scholar]
  36. 36. 
    Eisenberg D, Jucker M. 2012. The amyloid state of proteins in human diseases. Cell 148:1188–203
    [Google Scholar]
  37. 37. 
    Eisenberg DS, Sawaya MR. 2017. Structural studies of amyloid proteins at the molecular level. Annu. Rev. Biochem. 86:69–95
    [Google Scholar]
  38. 38. 
    Fowler DM, Kelly JW. 2012. Functional amyloidogenesis and cytotoxicity—insights into biology and pathology. PLOS Biol 10:e1001459
    [Google Scholar]
  39. 39. 
    Fowler DM, Koulov AV, Alory-Jost C, Marks MS, Balch WE, Kelly JW 2006. Functional amyloid formation within mammalian tissue. PLOS Biol 4:e6
    [Google Scholar]
  40. 40. 
    Franzmann TM, Alberti S. 2019. Protein phase separation as a stress survival strategy. Cold Spring Harb. Perspect. Biol. 11:a034058
    [Google Scholar]
  41. 41. 
    Gonçalves PA, Heller J, Rico-Ramirez AM, Daskalov A, Rosenfield G, Glass NL 2020. Conflict, competition and cooperation regulate social interactions in filamentous fungi. Annu. Rev. Microbiol 74:693–712
    [Google Scholar]
  42. 42. 
    Gould JS, Vrba ES. 1982. Exaptation—a missing term in the science of form. Paleobiology 8:4–15
    [Google Scholar]
  43. 43. 
    Graziani S, Silar P, Daboussi MJ 2004. Bistability and hysteresis of the ‘Secteur’ differentiation are controlled by a two-gene locus in Nectriahaematococca. BMC Biol 2:18
    [Google Scholar]
  44. 44. 
    Greenwald J, Buhtz C, Ritter C, Kwiatkowski W, Choe S et al. 2010. The mechanism of prion inhibition by HET-S. Mol. Cell 38:889–99
    [Google Scholar]
  45. 45. 
    Greenwald J, Kwiatkowski W, Riek R 2018. Peptide amyloids in the origin of life. J. Mol. Biol. 430:3735–50
    [Google Scholar]
  46. 46. 
    Greenwald J, Riek R. 2012. On the possible amyloid origin of protein folds. J. Mol. Biol. 421:417–26
    [Google Scholar]
  47. 47. 
    Harvey ZH, Chen Y, Jarosz DF 2018. Protein-based inheritance: epigenetics beyond the chromosome. Mol. Cell 69:195–202
    [Google Scholar]
  48. 48. 
    Heller J, Clave C, Gladieux P, Saupe SJ, Glass NL 2018. NLR surveillance of essential SEC-9 SNARE proteins induces programmed cell death upon allorecognition in filamentous fungi. PNAS 115:E2292–301
    [Google Scholar]
  49. 49. 
    Hofmann K. 2019. The evolutionary origins of programmed cell death signaling. Cold Spring Harb. Perspect. Biol. 2019:a036442
    [Google Scholar]
  50. 50. 
    Iadanza MG, Jackson MP, Hewitt EW, Ranson NA, Radford SE 2018. A new era for understanding amyloid structures and disease. Nat. Rev. Mol. Cell Biol. 19:755–73
    [Google Scholar]
  51. 51. 
    Jones JD, Vance RE, Dangl JL 2016. Intracellular innate immune surveillance devices in plants and animals. Science 354:aaf6395
    [Google Scholar]
  52. 52. 
    Jucker M, Walker LC. 2018. Propagation and spread of pathogenic protein assemblies in neurodegenerative diseases. Nat. Neurosci. 21:1341–49
    [Google Scholar]
  53. 53. 
    Kagan JC, Magupalli VG, Wu H 2014. SMOCs: supramolecular organizing centres that control innate immunity. Nat. Rev. Immunol. 14:821–26
    [Google Scholar]
  54. 54. 
    Kajava AV, Klopffleisch K, Chen S, Hofmann K 2014. Evolutionary link between metazoan RHIM motif and prion-forming domain of fungal heterokaryon incompatibility factor HET-s/HET-s. Sci. Rep. 4:7436
    [Google Scholar]
  55. 55. 
    Kajava AV, Steven AC. 2006. β-Rolls, β-helices, and other β-solenoid proteins. Adv. Protein Chem. 73:55–96
    [Google Scholar]
  56. 56. 
    Khan T, Kandola TS, Wu J, Venkatesan S, Ketter E et al. 2018. Quantifying nucleation in vivo reveals the physical basis of prion-like phase behavior. Mol. Cell 71:155–68.e7
    [Google Scholar]
  57. 57. 
    Kleino A, Ramia NF, Bozkurt G, Shen Y, Nailwal H et al. 2017. Peptidoglycan-sensing receptors trigger the formation of functional amyloids of the adaptor protein Imd to initiate Drosophila NF-κB signaling. Immunity 47:635–47.e6
    [Google Scholar]
  58. 58. 
    Koonin EV, Aravind L. 2002. Origin and evolution of eukaryotic apoptosis: the bacterial connection. Cell Death Differ 9:394–404
    [Google Scholar]
  59. 59. 
    Lane EB, Carlile MJ. 1979. Post-fusion somatic incompatibility in plasmodia of Physarumpolycephalum. J. Cell Sci 35:339–54
    [Google Scholar]
  60. 60. 
    Li J, McQuade T, Siemer AB, Napetschnig J, Moriwaki K et al. 2012. The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell 150:339–50
    [Google Scholar]
  61. 61. 
    Lo V, I-Chun Li J, Sunde M 2019. Fungal hydrophobins and their self-assembly into functional nanomaterials. Adv. Exp. Med. Biol. 1174:161–85
    [Google Scholar]
  62. 62. 
    Lu A, Magupalli VG, Ruan J, Yin Q, Atianand MK et al. 2014. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 156:1193–206
    [Google Scholar]
  63. 63. 
    Maddelein ML, Dos Reis S, Duvezin-Caubet S, Coulary-Salin B, Saupe SJ 2002. Amyloid aggregates of the HET-s prion protein are infectious. PNAS 99:7402–7
    [Google Scholar]
  64. 64. 
    Maji SK, Perrin MH, Sawaya MR, Jessberger S, Vadodaria K et al. 2009. Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science 325:328–32
    [Google Scholar]
  65. 65. 
    Mathur V, Seuring C, Riek R, Saupe SJ, Liebman SW 2012. Localization of HET-S to the cell periphery, not to [Het-s] aggregates, is associated with [Het-s]-HET-S toxicity. Mol. Cell Biol. 32:139–53
    [Google Scholar]
  66. 66. 
    Maury CP. 2009. Self-propagating beta-sheet polypeptide structures as prebiotic informational molecular entities: the amyloid world. Orig. Life Evol. Biosph. 39:141–50
    [Google Scholar]
  67. 67. 
    Mermigka G, Amprazi M, Mentzelopoulou A, Amartolou A, Sarris PF 2019. Plant and animal innate immunity complexes: fighting different enemies with similar weapons. Trends Plant Sci 25:80–91
    [Google Scholar]
  68. 68. 
    Meunier E, Broz P. 2017. Evolutionary convergence and divergence in NLR function and structure. Trends Immunol 38:744–57
    [Google Scholar]
  69. 69. 
    Mompean M, Li W, Li J, Laage S, Siemer AB et al. 2018. The structure of the necrosome RIPK1-RIPK3 core, a human hetero-amyloid signaling complex. Cell 173:1244–53.e10
    [Google Scholar]
  70. 70. 
    Murphy JM. 2019. The killer pseudokinase mixed lineage kinase domain-like protein (MLKL). Cold Spring Harb. Perspect. Biol. In press
    [Google Scholar]
  71. 71. 
    Murphy JM, Czabotar PE, Hildebrand JM, Lucet IS, Zhang JG et al. 2013. The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity 39:443–53
    [Google Scholar]
  72. 72. 
    Newby GA, Lindquist S. 2013. Blessings in disguise: biological benefits of prion-like mechanisms. Trends Cell Biol 23:251–59
    [Google Scholar]
  73. 73. 
    Nicotra ML. 2019. Invertebrate allorecognition. Curr. Biol. 29:R463–67
    [Google Scholar]
  74. 74. 
    Nydam ML, De Tomaso AW 2011. Creation and maintenance of variation in allorecognition loci: molecular analysis in various model systems. Front. Immunol. 2:79
    [Google Scholar]
  75. 75. 
    Otzen D, Riek R. 2019. Functional amyloids. Cold Spring Harb. Perspect. Biol. 11:a033860
    [Google Scholar]
  76. 76. 
    Paoletti M. 2016. Vegetative incompatibility in fungi: from recognition to cell death, whatever does the trick. Fungal Biol. Rev. 30:152–62
    [Google Scholar]
  77. 77. 
    Paoletti M, Saupe SJ. 2009. Fungal incompatibility: evolutionary origin in pathogen defense. BioEssays 31:1201–10
    [Google Scholar]
  78. 78. 
    Paoletti M, Saupe SJ, Clave C 2007. Genesis of a fungal non-self recognition repertoire. PLOS ONE 2:e283
    [Google Scholar]
  79. 79. 
    Pham CL, Kwan AH, Sunde M 2014. Functional amyloid: widespread in nature, diverse in purpose. Essays Biochem 56:207–19
    [Google Scholar]
  80. 80. 
    Pham CL, Shanmugam N, Strange M, O'Carroll A, Brown JW et al. 2019. Viral M45 and necroptosis-associated proteins form heteromeric amyloid assemblies. EMBO Rep 20:e46518
    [Google Scholar]
  81. 81. 
    Prusiner SB. 1982. Novel proteinaceous infectious particles cause scrapie. Science 216:136–44
    [Google Scholar]
  82. 82. 
    Rasmussen J, Jucker M, Walker LC 2017. Aβ seeds and prions: how close the fit. Prion 11:215–25
    [Google Scholar]
  83. 83. 
    Riek R. 2017. The three-dimensional structures of amyloids. Cold Spring Harb. Perspect. Biol. 9:a023572
    [Google Scholar]
  84. 84. 
    Riek R, Eisenberg DS. 2016. The activities of amyloids from a structural perspective. Nature 539:227–35
    [Google Scholar]
  85. 85. 
    Ritter C, Maddelein ML, Siemer AB, Luhrs T, Ernst M et al. 2005. Correlation of structural elements and infectivity of the HET-s prion. Nature 435:844–48
    [Google Scholar]
  86. 86. 
    Rizet G. 1952. Les phénomènes de barrage chez Podosporaanserina. I. Analyse de barrage entre les souches s et S. Rev. Cytol. Biol. Veg. 13:51–92
    [Google Scholar]
  87. 87. 
    Roberts BT, Wickner RB. 2003. Heritable activity: a prion that propagates by covalent autoactivation. Genes Dev 17:2083–87
    [Google Scholar]
  88. 88. 
    Rout SK, Friedmann MP, Riek R, Greenwald J 2018. A prebiotic template-directed peptide synthesis based on amyloids. Nat. Commun. 9:234
    [Google Scholar]
  89. 89. 
    Saarikangas J, Barral Y. 2016. Protein aggregation as a mechanism of adaptive cellular responses. Curr. Genet. 62:711–24
    [Google Scholar]
  90. 90. 
    Samir P, Kanneganti TD. 2019. Hidden aspects of valency in immune system regulation. Trends Immunol 40:1082–94
    [Google Scholar]
  91. 91. 
    Saupe SJ. 2011. The [Het-s] prion of Podosporaanserina and its role in heterokaryon incompatibility. Semin. Cell Dev. Biol. 22:460–68
    [Google Scholar]
  92. 92. 
    Seuring C, Greenwald J, Wasmer C, Wepf R, Saupe SJ et al. 2012. The mechanism of toxicity in HET-S/HET-s prion incompatibility. PLOS Biol 10:e1001451
    [Google Scholar]
  93. 93. 
    Shen C, Sharif H, Xia S, Wu H 2019. Structural and mechanistic elucidation of inflammasome signaling by cryo-EM. Curr. Opin. Struct. Biol. 58:18–25
    [Google Scholar]
  94. 94. 
    Su L, Quade B, Wang H, Sun L, Wang X, Rizo J 2014. A plug release mechanism for membrane permeation by MLKL. Structure 22:1489–500
    [Google Scholar]
  95. 95. 
    Tanaka M, Collins SR, Toyama BH, Weissman JS 2006. The physical basis of how prion conformations determine strain phenotypes. Nature 442:585–89
    [Google Scholar]
  96. 96. 
    Tuite MF, Serio TR. 2010. The prion hypothesis: from biological anomaly to basic regulatory mechanism. Nat. Rev. Mol. Cell Biol. 11:823–33
    [Google Scholar]
  97. 97. 
    Uehling J, Deveau A, Paoletti M 2017. Do fungi have an innate immune response? An NLR-based comparison to plant and animal immune systems. PLOS Pathog 13:e1006578
    [Google Scholar]
  98. 98. 
    Urbach JM, Ausubel FM. 2017. The NBS-LRR architectures of plant R-proteins and metazoan NLRs evolved in independent events. PNAS 114:1063–68
    [Google Scholar]
  99. 99. 
    Vajjhala PR, Ve T, Bentham A, Stacey KJ, Kobe B 2017. The molecular mechanisms of signaling by cooperative assembly formation in innate immunity pathways. Mol. Immunol. 86:23–37
    [Google Scholar]
  100. 100. 
    Van Gerven N, Klein RD, Hultgren SJ, Remaut H 2015. Bacterial amyloid formation: structural insights into curli biogensis. Trends Microbiol 23:693–706
    [Google Scholar]
  101. 101. 
    Van Gerven N, Van der Verren SE, Reiter DM, Remaut H 2018. The role of functional amyloids in bacterial virulence. J. Mol. Biol. 430:3657–84
    [Google Scholar]
  102. 102. 
    Van Melckebeke H, Wasmer C, Lange A, Ab E, Loquet A et al. 2010. Atomic-resolution three-dimensional structure of HET-s(218–289) amyloid fibrils by solid-state NMR spectroscopy. J. Am. Chem. Soc. 132:13765–75
    [Google Scholar]
  103. 103. 
    Wan W, Stubbs G. 2014. Fungal prion HET-s as a model for structural complexity and self-propagation in prions. PNAS 111:5201–6
    [Google Scholar]
  104. 104. 
    Wang H, Sun L, Su L, Rizo J, Liu L et al. 2014. Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol. Cell 54:133–46
    [Google Scholar]
  105. 105. 
    Wang J, Hu M, Wang J, Qi J, Han Z et al. 2019. Reconstitution and structure of a plant NLR resistosome conferring immunity. Science 364:eaav5870
    [Google Scholar]
  106. 106. 
    Wasmer C, Lange A, Van Melckebeke H, Siemer AB, Riek R, Meier BH 2008. Amyloid fibrils of the HET-s(218–289) prion form a β solenoid with a triangular hydrophobic core. Science 319:1523–26
    [Google Scholar]
  107. 107. 
    Wasmer C, Zimmer A, Sabate R, Soragni A, Saupe SJ et al. 2010. Structural similarity between the prion domain of HET-s and a homologue can explain amyloid cross-seeding in spite of limited sequence identity. J. Mol. Biol. 402:311–25
    [Google Scholar]
  108. 108. 
    Westermark GT, Fandrich M, Westermark P 2015. AA amyloidosis: pathogenesis and targeted therapy. Annu. Rev. Pathol. 10:321–44
    [Google Scholar]
  109. 109. 
    Wickner RB. 1994. [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomycescerevisiae. Science 264:566–69
    [Google Scholar]
  110. 110. 
    Wickner RB. 1997. A new prion controls fungal cell fusion incompatibility. PNAS 94:10012–14
    [Google Scholar]
  111. 111. 
    Wickner RB. 2016. Yeast and fungal prions. Cold Spring Harb. Perspect. Biol. 8:a023531
    [Google Scholar]
  112. 112. 
    Wickner RB, Edskes HK, Roberts BT, Baxa U, Pierce MM et al. 2004. Prions: proteins as genes and infectious entities. Genes Dev 18:470–85
    [Google Scholar]
  113. 113. 
    Wickner RB, Edskes HK, Son M, Bezsonov EE, DeWilde M, Ducatez M 2018. Yeast prions compared to functional prions and amyloids. J. Mol. Biol. 430:3707–19
    [Google Scholar]
  114. 114. 
    Willingham SB, Bergstralh DT, O'Connor W, Morrison AC, Taxman DJ et al. 2007. Microbial pathogen-induced necrotic cell death mediated by the inflammasome components CIAS1/cryopyrin/NLRP3 and ASC. Cell Host Microbe 2:147–59
    [Google Scholar]
  115. 115. 
    Wu H. 2013. Higher-order assemblies in a new paradigm of signal transduction. Cell 153:287–92
    [Google Scholar]
  116. 116. 
    Wu H, Fuxreiter M. 2016. The structure and dynamics of higher-order assemblies: amyloids, signalosomes, and granules. Cell 165:1055–66
    [Google Scholar]
  117. 117. 
    Xue Y, Enosi Tuipulotu D, Tan WH, Kay C, Man SM 2019. Emerging activators and regulators of inflammasomes and pyroptosis. Trends Immunol 40:1035–52
    [Google Scholar]
  118. 118. 
    Yin Q, Fu TM, Li J, Wu H 2015. Structural biology of innate immunity. Annu. Rev. Immunol. 33:393–416
    [Google Scholar]
/content/journals/10.1146/annurev-micro-011320-013555
Loading
/content/journals/10.1146/annurev-micro-011320-013555
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error