Skip to main content

Advertisement

Log in

Ion Pair Strategy in Solid Lipid Nanoparticles: a Targeted Approach to Improve Epidermal Targeting with Controlled Adapalene Release, Resulting Reduced Skin Irritation

  • RESEARCH PAPER
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Adapalene (AD) is one of the main retinoids used in the topical therapy of acne, an extremely common skin disease usually associated with psychological morbidity. However, like other retinoids, AD is frequently associated with skin irritation. To overcome the skin irritation, we proposed the encapsulation of AD in solid lipid nanoparticles (SLNs) using the ion pair strategy.

Methods

The developed SLN-AD was characterized by high-performance liquid chromatography, differential scanning calorimetry, X-ray diffraction, synchrotron small-angle X-ray scattering, and transmission electron microscopy. In vitro permeation tests using porcine skin and in vivo mice skin irritation test were performed to evaluate, respectively, the drug’s skin distribution and the skin irritation.

Results

The characterization studies were able to demonstrate that the proposed strategy effectively provided high AD encapsulation in SLNs and its incorporation into a hydrophilic gel. Sustained release, epidermal targeting, and less skin irritation were observed for SLN-AD gel in comparison to the marketed AD gel.

Conclusions

The studies demonstrated that the encapsulation of AD in SLNs through the formation of an ion pair is a valuable alternative to diminish the adverse skin reactions caused by AD and can optimize patient adherence to treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AD:

Adapalene

DC-Chol® :

3β-[N-(Dimethylaminoethane)carbamoyl] cholesterol

DSC:

Differential scanning calorimetry

EE:

Encapsulation efficiency

FTIR:

Fourier-transform infrared spectroscopy

HPLC:

High performance liquid chromatography

MH:

Maprotiline hydrochloride

PBS:

Phosphate-buffered saline

PDI:

Polydispersity index

PU:

Pilosebaceous unit

RA:

All-trans retinoic acid

SA:

Stearylamine

SAXS:

Synchrotron Small Angle X-ray Scattering

SLN:

Solid lipid nanoparticles

TEM:

Transmission electron microscopy

XRD:

X-ray diffraction

References

  1. Williams HC, Dellavalle RP, Garner S. Acne vulgaris. Lancet. 2012;379:361–72. https://doi.org/10.1016/s0140-6736(11)60321-8.

    Article  PubMed  Google Scholar 

  2. Samuels DV, Rosenthal R, Lin R, Chaudhari S, Natsuaki MN. Acne vulgaris and risk of depression and anxiety: a meta-analytic review. J Am Acad Dermatol. 2020;20:S0190–9622. https://doi.org/10.1016/j.jaad.2020.02.040.

    Article  Google Scholar 

  3. Zaenglein AL, Pathy AL, Schlosser BJ, Alikhan A, Baldwin HE, Berson DS, et al. Guidelines of care for the management of acne vulgaris. J Am Acad Dermatol. 2016;74:945–73. https://doi.org/10.1016/j.jaad.2015.12.037.

  4. Webster GF. Topical tretinoin in acne therapy. J Am Acad Dermatol. 1998;39:S38–44. https://doi.org/10.1016/s0190-9622(98)70443-8.

    Article  CAS  PubMed  Google Scholar 

  5. Tan X, Davis SA, Balkrishnan R, Krowchuk DP, Feldman SR. Factors associated with topical retinoid prescriptions for acne. J Dermatol Treat. 2013;25:110–4. https://doi.org/10.3109/09546634.2013.814758.

    Article  Google Scholar 

  6. Castro GA, Coelho ALL, Oliveira CA, Mahecha GA, Oréfice RL, Ferreira LA. Formation of ion pairing as an alternative to improve encapsulation and stability and to reduce skin irritation of retinoic acid loaded in solid lipid nanoparticles. Int J Pharm. 2009;381:77–83. https://doi.org/10.1016/j.ijpharm.2009.07.025.

    Article  CAS  PubMed  Google Scholar 

  7. Castro GA, Oliveira CA, Mahecha GAB, Ferreira LAM. Comedolytic effect and reduced skin irritation of a new formulation of all-trans retinoic acid-loaded solid lipid nanoparticles for topical treatment of acne. Arch Dermatol Res. 2011;303:513–20. https://doi.org/10.1007/s00403-011-1130-3.

    Article  CAS  PubMed  Google Scholar 

  8. Charoenputtakhun P, Opanasopit P, Rojanarata T, Ngawhirunpat T. All-trans retinoic acid-loaded lipid nanoparticles as a transdermal drug delivery carrier. Pharm Dev Technol. 2013;19:164–72. https://doi.org/10.3109/10837450.2013.763261.

    Article  CAS  PubMed  Google Scholar 

  9. Shah KA, Joshi MD, Patravale VB. Biocompatible microemulsions for fabrication of Glyceryl Monostearate solid lipid nanoparticles (SLN) of Tretinoin. J Biomed Nanotechnol. 2009;5:396–400. https://doi.org/10.1166/jbn.2009.1048.

    Article  CAS  PubMed  Google Scholar 

  10. Silva EL, Lima FA, Carneiro G, Ramos JP, Gomes DA, Souza-Fagundes EM, et al. Improved in vitro antileukemic activity of all-trans retinoic acid loaded in cholesteryl butyrate solid lipid nanoparticles. J Nanosci Nanotechnol. 2016;16:1291–300. https://doi.org/10.1166/jnn.2016.11677.

  11. Harde H, Agrawal AK, Katariya M, Kale D, Jain S. Development of a topical adapalene-solid lipid nanoparticle loaded gel with enhanced efficacy and improved skin tolerability. RSC Adv. 2015;5:43917–29. https://doi.org/10.1039/c5ra06047h.

    Article  CAS  Google Scholar 

  12. Lauterbach A, Mueller-Goymann CC. Development, formulation, and characterization of an adapalene-loaded solid lipid microparticle dispersion for follicular penetration. Int J Pharm. 2014;466:122–32. https://doi.org/10.1016/j.ijpharm.2014.02.050.

    Article  CAS  PubMed  Google Scholar 

  13. Jain AK, Jain A, Garg NK, Agarwal A, Jain A, Jain SA, et al. Adapalene loaded solid lipid nanoparticles gel: an effective approach for acne treatment. Colloids Surf B Biointerfaces. 2014;121:222–9. https://doi.org/10.1016/j.colsurfb.2014.05.041.

  14. Jain A, Garg NK, Jain A, Kesharwani P, Jain AK, Nirbhavane P, et al. A synergistic approach of adapalene-loaded nanostructured lipid carriers, and vitamin C co-administration for treating acne. Drug Dev Ind Pharm. 2015;42:897–905. https://doi.org/10.3109/03639045.2015.1104343.

  15. Leyden JJ, Grossman R, Nighland M. Cumulative irritation potential of topical retinoid formulations. J Drugs Dermatol. 2008;7:14–8.

    Google Scholar 

  16. Shamban AT, Narurkar VA. Multimodal treatment of acne. Acne Scars and Pigmentation Dermatol Clin. 2009;27:459–71. https://doi.org/10.1016/j.det.2009.08.010.

    Article  CAS  PubMed  Google Scholar 

  17. Um H, Holm R. Solid lipid nanocarriers in drug delivery: characterisation and design. Expert Opin Drug Deliv. 2018;15(8):771–85. https://doi.org/10.1080/17425247.2018.1504018.

    Article  CAS  Google Scholar 

  18. Dingler A, Gohla S. Production of solid lipid nanoparticles (SLN): scaling up feasibilities. J Microencapsul. 2002;19:11–6. https://doi.org/10.1080/02652040010018056.

    Article  CAS  PubMed  Google Scholar 

  19. Schäfer-Korting M, Mehnert W, Korting H. Lipid nanoparticles for improved topical application of drugs for skin diseases. Adv Drug Deliv Rev. 2007;59:427–43. https://doi.org/10.1016/j.addr.2007.04.006.

    Article  CAS  PubMed  Google Scholar 

  20. Vogt A, Mandt N, Lademann J, Schaefer H, Blume-Peytavi U. Follicular targeting–a promising tool in selective Dermatotherapy. J Invest Dermatol Symp Proc. 2005;10:252–5. https://doi.org/10.1111/j.1087-0024.2005.10124.x.

    Article  Google Scholar 

  21. Ferreira LS, Ramaldes GA, Nunan EA, Ferreira LAM. In Vitro skin permeation and retention of Paromomycin from liposomes for topical treatment of the cutaneous Leishmaniasis. Drug Dev Ind Pharm. 2004;30:289–96. https://doi.org/10.1081/ddc-120030423.

    Article  CAS  PubMed  Google Scholar 

  22. Das S, Chaudhury A. Recent advances in lipid nanoparticle formulations with solid matrix for Oral drug delivery. AAPS PharmSciTech. 2010;12:62–76. https://doi.org/10.1208/s12249-010-9563-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Leanne DS, Ju-Yen F, Thet TH, Saravanan M, Azahari K, Wan HBWK, et al. Characterization, optimization, and in vitro evaluation of Technetium-99m-labeled niosomes. Int. J. Nanomedicine. 2019;14:1101–17. https://doi.org/10.2147/IJN.S184912.

  24. Jenning V, Schäfer-Korting M, Gohla S. Vitamin A-loaded solid lipid nanoparticles for topical use: drug release properties. J Control Release. 2000;66:115–26. https://doi.org/10.1016/s0168-3659(99)00223-0.

    Article  CAS  PubMed  Google Scholar 

  25. Westesen K, Bunjes H, Koch M. Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential. J Control Release. 1997;48:223–36. https://doi.org/10.1016/s0168-3659(97)00046-1.

    Article  CAS  Google Scholar 

  26. Radomska-Soukharev A. Stability of lipid excipients in solid lipid nanoparticles. Adv Drug Deliv Rev. 2007;59:411–8. https://doi.org/10.1016/j.addr.2007.04.004.

    Article  CAS  PubMed  Google Scholar 

  27. Costa P, Lobo JMS. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13:123–33. https://doi.org/10.1016/s0928-0987(01)00095-1.

    Article  CAS  PubMed  Google Scholar 

  28. Ramezanli T, Zhang Z, Michniak-Kohn BB. Development and characterization of polymeric nanoparticle-based formulation of adapalene for topical acne therapy. Nanomedicine. 2017;13:143–52. https://doi.org/10.1016/j.nano.2016.08.008.

    Article  CAS  PubMed  Google Scholar 

  29. Martin B, Meunier C, Montels D, Watts O. Chemical stability of adapalene and tretinoin when combined with benzoyl peroxide in presence and in absence of visible light and ultraviolet radiation. Br J Dermatol. 1998;139:8–11. https://doi.org/10.1046/j.1365-2133.1998.1390s2008.x.

    Article  CAS  PubMed  Google Scholar 

  30. Bhalekar M, Upadhaya P, Madgulkar A. Formulation and evaluation of Adapalene-loaded nanoparticulates for epidermal localization. Drug Deliv Transl Res. 2015;5:585–95. https://doi.org/10.1007/s13346-015-0261-z.

    Article  CAS  PubMed  Google Scholar 

  31. Carneiro G, Silva EL, Pacheco LA, Souza-Fagundes EM, Corrêa NC, Goes AM, et al. Formation of ion pairing as an alternative to improve encapsulation and anticancer activity of all-trans retinoic acid loaded in solid lipid nanoparticles. Int J Nanomedicine. 2012;7:6011–20. https://doi.org/10.2147/ijn.s38953.

  32. Hatanaka T, Kamon T, Morigaki S, Katayama K. Koizumi. T. ion pair skin transport of a zwitterionic drug, cephalexin. J Control Release. 2000;66:63–71. https://doi.org/10.1016/s0168-3659(99)00259-x.

    Article  CAS  PubMed  Google Scholar 

  33. Sallam MA, Boscá MTM. Mechanistic analysis of human skin distribution and follicular targeting of Adapalene-loaded biodegradable Nanospheres with an insight into hydrogel matrix influence, In Vitro skin irritation, and In Vivo tolerability. J Pharm Sci. 2017;106:3140–9. https://doi.org/10.1016/j.xphs.2017.05.038.

    Article  CAS  PubMed  Google Scholar 

  34. Guo C, Khengar RH, Sun M, Wang Z, Fan A, Zhao Y. Acid-responsive polymeric Nanocarriers for topical Adapalene delivery. Pharm Res. 2014;31:3051–9. https://doi.org/10.1007/s11095-014-1398-z.

    Article  CAS  PubMed  Google Scholar 

  35. Jenning V, Gohla SH. Encapsulation of retinoids in solid lipid nanoparticles (SLN). J Microencapsul. 2001;18:149–58. https://doi.org/10.1080/02652040010000361.

    Article  CAS  PubMed  Google Scholar 

  36. Cai S, Yang Q, Bagby TR, Forrest ML. Lymphatic drug delivery using engineered liposomes and solid lipid nanoparticles. Adv Drug Deliv Rev. 2011;63:901–8. https://doi.org/10.1016/j.addr.2011.05.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jensen L, Petersson K, Nielsen H. In vitro penetration properties of solid lipid nanoparticles in intact and barrier-impaired skin. Eur J Pharm Biopharm. 2011;79:68–75. https://doi.org/10.1016/j.ejpb.2011.05.012.

    Article  CAS  PubMed  Google Scholar 

  38. Lademann J, Richter H, Teichmann A, Otberg N, Blume-Peytavi U, Luengo J, et al. Nanoparticles – an efficient carrier for drug delivery into the hair follicles. Eur J Pharm Biopharm. 2007;66:159–64. https://doi.org/10.1016/j.ejpb.2006.10.019.

  39. Kandekar SG, Río-Sancho SD, Lapteva M, Kalia YN. Selective delivery of adapalene to the human hair follicle under finite dose conditions using polymeric micelle nanocarriers. Nanoscale. 2018;10:1099–110. https://doi.org/10.1039/c7nr07706h.

    Article  CAS  PubMed  Google Scholar 

  40. Sakuta T, Kanayama T. Comedolytic effect of a novel RAR gamma-specific retinoid, ER36009: comparison with retinoic acid in the rhino mouse model. Eur J Dermatol. 2005;15:459–64.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gisele A. C. Goulart.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, L.B.O., Lima, F.A., Alves, C.P.B. et al. Ion Pair Strategy in Solid Lipid Nanoparticles: a Targeted Approach to Improve Epidermal Targeting with Controlled Adapalene Release, Resulting Reduced Skin Irritation. Pharm Res 37, 148 (2020). https://doi.org/10.1007/s11095-020-02866-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-020-02866-0

Key Words

Navigation