Skip to main content
Log in

Dicationic Amino Substituted Gemini Surfactants and their Nanoplexes: Improved Synthesis and Characterization of Transfection Efficiency and Corneal Penetration In Vitro

  • RESEARCH PAPER
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To formulate and characterize nanoparticles from m-7NH-m gemini surfactants, synthesized by a new improved method, for non-invasive gene delivery including optimization of composition for transfection efficiency and corneal penetration.

Methods

A one-pot, solvent-free, DMAP-free method was developed for the synthesis of m-7NH-m (m = 12–18) gemini surfactant series. Lipoplexes (LPXs) and nanoplexes (NPXs) of gemini surfactant-plasmid DNA were formulated with and without DOPE helper lipid, respectively, at various charge ratios and characterized by dynamic light scattering and zeta potential measurements. Transfection efficiency, cellular toxicity, effect of DOPE and gene expression kinetic studies were carried out in A7 astrocytes by flow cytometry and confocal microscopy. Corneal penetration studies of 18-7NH-18 NPXs were carried out using 3D EpiCorneal® tissue model.

Results

The new synthesis method provides a two-fold improved yield and the production of a pure species of m-7NH-m without DMAP and trimeric m-7N(m)-m surfactants as impurities. Structure and purity was confirmed by ESI-MS, 1H NMR spectroscopy and surface tension measurements. Particle size of 199.80 ± 1.83 nm ± S.D. and a zeta potential value of +30.18 ± 1.17 mV ± S.D. was obtained for 18-7NH-18 5:1 ratio NPXs showed optimum transfection efficiency (10.97 ± 0.11%) and low toxicity (92.97 ± 0.57% viability) at the 48-h peak expression. Inclusion of DOPE at 1: 0.5 and 1:1 ratios to gemini surfactant reduced transfection efficiency and increased toxicity. Treatment of EpiCorneal® tissue model showed deep penetration of up to 100 μm with 18-7NH-18 NPXs.

Conclusion

Overall, 18-7NH-18 NPXs are potential gene delivery systems for ophthalmic gene delivery and for further in vivo studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CMC:

Critical micelle concentration

CLSM:

Confocal laser scanning microscope

DOPE:

1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine

DMAP:

4-(Dimethylamino)pyridine

ESI-MS:

Electro-spray ionization mass spectrometry

GP:

gemini:plasmid

GPL:

gemini:plasmid:lipid

GFP:

Green fluorescent protein

1H NMR:

Proton- nuclear magnetic resonance spectroscopy

LPX:

Lipoplex

NPX:

Nanoplex

TE:

Transfection efficiency

TFA:

Trifluoroacetic acid

TIS:

Triisopropylsilane

DMEM:

Dulbecco’s modified eagle’s medium

FBS:

Fetal bovine serum

References

  1. Bunton CA, Robinson LB, Schaak J, Stam M. Catalysis of nucleophilic substitutions by micelles of dicationic detergents. The Journal of Organic Chemistry. 1971;36(16):2346–50.

    Article  CAS  Google Scholar 

  2. Deinega Y, Ulberg Z, Marochko L, Rudi V, Denisenko V. Investigation of colloid-chemical properties of surfactants of type of quaternary ammonium-compounds. Colloid J USSR. 1974;36(4):601–4.

    Google Scholar 

  3. Karaborni S, Esselink K, Hilbers P, Smit B, Karthauser J, Van Os N, et al. Simulating the self-assembly of gemini (dimeric) surfactants. Science. 1994;266(5183):254–6.

    Article  CAS  Google Scholar 

  4. Menger FM, Keiper JS. Gemini surfactants. Angew Chem Int Ed. 2000;39(11):1906–20.

    Article  CAS  Google Scholar 

  5. Kirby AJ, Camilleri P, Engberts JB, Feiters MC, Nolte RJ, Söderman O, et al. Gemini surfactants: new synthetic vectors for gene transfection. Angew Chem Int Ed. 2003;42(13):1448–57.

    Article  CAS  Google Scholar 

  6. Badea I, Verrall R, Baca-Estrada M, Tikoo S, Rosenberg A, Kumar P, et al. In vivo cutaneous interferon-γ gene delivery using novel dicationic (gemini) surfactant-plasmid complexes. The journal of gene medicine. 2005;7(9):1200–14.

    Article  CAS  Google Scholar 

  7. Wang C, Li X, Wettig SD, Badea I, Foldvari M, Verrall RE. Investigation of complexes formed by interaction of cationic gemini surfactants with deoxyribonucleic acid. Phys Chem Chem Phys. 2007;9(13):1616–28.

    Article  CAS  Google Scholar 

  8. Wettig SD, Verrall RE, Foldvari M. Gemini surfactants: a new family of building blocks for non-viral gene delivery systems. Current gene therapy. 2008;8(1):9–23.

    Article  CAS  Google Scholar 

  9. Ahmed T, Kamel AO, Wettig SD. Interactions between DNA and Gemini surfactant: impact on gene therapy: part I. Nanomedicine. 2016;11(3):289–306.

    Article  CAS  Google Scholar 

  10. Muñoz-Úbeda M, Misra SK, Barrán-Berdón AL, Datta S, Aicart-Ramos C, Castro-Hartmann P, et al. How does the spacer length of cationic Gemini lipids influence the Lipoplex formation with plasmid DNA? Physicochemical and biochemical characterizations and their relevance in gene therapy. Biomacromolecules. 2012;13(12):3926–37.

    Article  Google Scholar 

  11. Wettig S. D., Badea I, Donkuru M, Verrall RE, Foldvari M. structural and transfection properties of amine-substituted gemini surfactant-based nanoparticles. J Gene Med. 2007;9(8):649–58.

    Article  CAS  Google Scholar 

  12. Wettig SD, Wang C, Verrall RE, Foldvari M. Thermodynamic and aggregation properties of aza- and imino-substituted gemini surfactants designed for gene delivery. Phys Chem Chem Phys. 2007;9(7):871–7.

    Article  CAS  Google Scholar 

  13. Donkuru M, Wettig SD, Verrall RE, Badea I, Foldvari M. Designing pH-sensitive gemini nanoparticles for non-viral gene delivery into keratinocytes. J Mater Chem. 2012;22(13):6232–44.

    Article  CAS  Google Scholar 

  14. Al-Dulaymi M, Michel D, Chitanda JM, El-Aneed A, Verrall RE, Grochulski P, et al. Molecular engineering as an approach to modulate gene delivery efficiency of peptide-modified Gemini surfactants. Bioconjug Chem. 2018;29(10):3293–308.

    Article  CAS  Google Scholar 

  15. Mohammed-Saeid W, Chitanda J, Al-Dulaymi M, Verrall R, Badea I. Design and evaluation of RGD-modified Gemini surfactant-based Lipoplexes for targeted gene therapy in melanoma model. Pharm Res. 2017;34(9):1886–96.

    Article  CAS  Google Scholar 

  16. Singh J, Yang P, Michel D, Verrall RE, Foldvari M, Badea I. Amino acid-substituted gemini surfactant-based nanoparticles as safe and versatile gene delivery agents. Current drug delivery. 2011;8(3):299–306.

    Article  CAS  Google Scholar 

  17. Yang P, Singh J, Wettig S, Foldvari M, Verrall RE, Badea I. Enhanced gene expression in epithelial cells transfected with amino acid-substituted gemini nanoparticles. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2010;75(3):311–20.

    Article  CAS  Google Scholar 

  18. Menger FM, Littau CA. Gemini-surfactants: synthesis and properties. J Am Chem Soc. 1991;113(4):1451–2.

    Article  CAS  Google Scholar 

  19. Menger FM, Littau CA. Gemini surfactants: a new class of self-assembling molecules. J Am Chem Soc. 1993;115(22):10083–90.

    Article  CAS  Google Scholar 

  20. Zana R, Benrraou M, Rueff R. Alkanediyl-a, w-bis (dimethyl-alkyl ammonium bromide) surfactants. 1. Effect of the spacer chain length on the CMC and micelle ionization degree. Langmuir : the ACS journal of surfaces and colloids. 1991;7:1072–5.

    Article  CAS  Google Scholar 

  21. Wettig SD, Verrall RE. Thermodynamic studies of aqueous m–s–m Gemini surfactant systems. J Colloid Interface Sci. 2001;235(2):310–6.

    Article  CAS  Google Scholar 

  22. Elsabahy M, Badea I, Verrall R, Donkuru M, Foldvari M. Dicationic gemini nanoparticle design for gene therapy. In: John Wiley & Sons, Inc; 2013. p. 509–528.

  23. Hayashi Y. Pot economy and one-pot synthesis. Chem Sci. 2016;7(2):866–80.

    Article  CAS  Google Scholar 

  24. Raju M, Mäeorg S, Tšubrik O, Mäeorg U. Efficient solventless technique for Boc-protection of hydrazines and amines. Arkivoc. 2009;6:291–7.

    Google Scholar 

  25. Han Y, Wang Y. Aggregation behavior of gemini surfactants and their interaction with macromolecules in aqueous solution. Phys Chem Chem Phys. 2011;13(6):1939–56.

    Article  CAS  Google Scholar 

  26. Zana R. Dimeric (Gemini) surfactants: effect of the spacer group on the association behavior in aqueous solution. J Colloid Interface Sci. 2002;248(2):203–20.

    Article  CAS  Google Scholar 

  27. Liu F, Huang L. Development of non-viral vectors for systemic gene delivery. J Control Release. 2002;78(1):259–66.

    Article  CAS  Google Scholar 

  28. Buck J, Grossen P, Cullis PR, Huwyler J, Witzigmann D. Lipid-based DNA therapeutics: hallmarks of non-viral gene delivery. ACS Nano. 2019;13(4):3754–82.

    Article  CAS  Google Scholar 

  29. Song YK, Liu F, Chu S, Liu D. Characterization of cationic liposome-mediated gene transfer in vivo by intravenous administration. Hum Gene Ther. 1997;8(13):1585–94.

    Article  CAS  Google Scholar 

  30. Audouy S, Molema G, de Leij L, Hoekstra D. Serum as a modulator of lipoplex-mediated gene transfection: dependence of amphiphile, cell type and complex stability. The Journal of Gene Medicine: A cross-disciplinary journal for research on the science of gene transfer and its clinical applications. 2000;2(6):465–76.

    Article  CAS  Google Scholar 

  31. Al-Dosari MS, Gao X. Nonviral gene delivery: principle, limitations, and recent Progress. AAPS J. 2009;11(4):671.

    Article  CAS  Google Scholar 

  32. Beddoes CM, Case CP, Briscoe WH. Understanding nanoparticle cellular entry: a physicochemical perspective. Adv Colloid Interf Sci. 2015;218:48–68.

    Article  CAS  Google Scholar 

  33. Munro S. Lipid rafts: elusive or illusive? Cell. 2003;115(4):377–88.

    Article  CAS  Google Scholar 

  34. Taheri-Araghi S, Chen D-W, Kohandel M, Sivaloganathan S, Foldvari M. Tuning optimum transfection of gemini surfactant–phospholipid–DNA nanoparticles by validated theoretical modeling. Nanoscale. 2019;11(3):1037–46.

    Article  CAS  Google Scholar 

  35. Gharagozloo M, Rafiee A, Chen DW, Foldvari M. A flow cytometric approach to study the mechanism of gene delivery to cells by gemini-lipid nanoparticles: an implication for cell membrane nanoporation. Journal of Nanobiotechnology. 2015;13(1):62.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianna Foldvari.

Additional information

Guest Editor: Sheng Qi

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narsineni, L., Foldvari, M. Dicationic Amino Substituted Gemini Surfactants and their Nanoplexes: Improved Synthesis and Characterization of Transfection Efficiency and Corneal Penetration In Vitro. Pharm Res 37, 144 (2020). https://doi.org/10.1007/s11095-020-02836-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-020-02836-6

Key words

Navigation