Skip to main content

Advertisement

Log in

RVG29-Functionalized Lipid Nanoparticles for Quercetin Brain Delivery and Alzheimer’s Disease

  • RESEARCH PAPER
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Lipid nanoparticles (SLN and NLC) were functionalized with the RVG29 peptide in order to target the brain and increase the neuronal uptake through the nicotinic acetylcholine receptors. These nanosystems were loaded with quercetin to take advantage of its neuroprotective properties mainly for Alzheimer’s disease.

Methods

The functionalization of nanoparticles with RVG29 peptide was confirmed by NMR and FTIR. Their morphology was assessed by transmission electron microscopy and nanoparticles size, polydispersity and zeta potential were determined by dynamic light scattering. The in vitro validation tests were conducted in hCMEC/D3 cells, a human blood-brain barrier model and thioflavin T binding assay was conducted to assess the process of amyloid-beta peptide fibrillation typical of Alzheimer’s disease.

Results

RVG29-nanoparticles displayed spherical morphology and size below 250 nm, which is compatible with brain applications. Zeta potential values were between −20 and −25 mV. Quercetin entrapment efficiency was generally higher than 80% and NLC nanoparticles were able to encapsulate up to 90%. The LDH assay showed that there is no cytotoxicity in hCMEC/D3 cell line and RVG29-nanoparticles clearly increased in 1.5-fold the permeability across the in vitro model of blood-brain barrier after 4 h of incubation compared with non-functionalized nanoparticles. Finally, this nanosystem was capable of inhibiting amyloid-beta aggregation in thioflavin T binding assay, suggesting its great potential for neuroprotection.

Conclusions

RVG29-nanoparticles that simultaneously target the blood-brain barrier and induce neurons protection against amyloid-beta fibrillation proved to be an efficient way of quercetin delivery and a promising strategy for future approaches in Alzheimer’s disease.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

No raw/processed data is available.

References

  1. Heoand HJ, Lee CY. Protective effects of quercetin and vitamin C against oxidative stress-induced neurodegeneration. J Agric Food Chem. 2004;52:7514–7.

    Google Scholar 

  2. Zhang ZJ, Cheang LC, Wang MW, Lee SM. Quercetin exerts a neuroprotective effect through inhibition of the iNOS/NO system and pro-inflammation gene expression in PC12 cells and in zebrafish. Int J Mol Med. 2011;27:195–203.

    PubMed  Google Scholar 

  3. Dok-Go H, Lee KH, Kim HJ, Lee EH, Lee J, Song YS, et al. Neuroprotective effects of antioxidative flavonoids, quercetin, (+)-dihydroquercetin and quercetin 3-methyl ether, isolated from Opuntia ficus-indica var. saboten. Brain Res. 2003;965:130–6.

    CAS  PubMed  Google Scholar 

  4. Sagara Y, Vanhnasy J, Maher P. Induction of PC12 cell differentiation by flavonoids is dependent upon extracellular signal-regulated kinase activation. J Neurochem. 2004;90:1144–55.

    CAS  PubMed  Google Scholar 

  5. Min YD, Choi CH, Bark H, Son HY, Park HH, Lee S, et al. Quercetin inhibits expression of inflammatory cytokines through attenuation of NF-kappaB and p38 MAPK in HMC-1 human mast cell line. Inflamm Res: Official Journal of the European Histamine Research Society [et al]. 2007;56:210–5.

    CAS  Google Scholar 

  6. Kimata M, Shichijo M, Miura T, Serizawa I, Inagaki N, Nagai H. Effects of luteolin, quercetin and baicalein on immunoglobulin E-mediated mediator release from human cultured mast cells. Clin Exp Allergy: J Br Soc Allergy Clin Immunol. 2000;30:501–8.

    CAS  Google Scholar 

  7. Afanas'ev IB, Dorozhko AI, Brodskii AV, Kostyuk VA, Potapovitch AI. Chelating and free radical scavenging mechanisms of inhibitory action of rutin and quercetin in lipid peroxidation. Biochem Pharmacol. 1989;38:1763–9.

    CAS  PubMed  Google Scholar 

  8. van Acker SA, van Balen GP, van den Berg DJ, Bast A, van der Vijgh WJ. Influence of iron chelation on the antioxidant activity of flavonoids. Biochem Pharmacol. 1998;56:935–43.

    PubMed  Google Scholar 

  9. Ansari MA, Abdul HM, Joshi G, Opii WO, Butterfield DA. Protective effect of quercetin in primary neurons against Abeta(1-42): relevance to Alzheimer’s disease. J Nutr Biochem. 2009;20:269–75.

    CAS  PubMed  Google Scholar 

  10. Kim H, Park BS, Lee KG, Choi CY, Jang SS, Kim YH, et al. Effects of naturally occurring compounds on fibril formation and oxidative stress of beta-amyloid. J Agric Food Chem. 2005;53:8537–41.

    CAS  PubMed  Google Scholar 

  11. Maria S-GA, Ignacio M-MJ, Ramírez-Pineda Jose R, Marisol L-R, Edison O, Patricia C-GG. The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology. 2015;93:134–45.

    PubMed Central  Google Scholar 

  12. Guoand Y, Bruno RS. Endogenous and exogenous mediators of quercetin bioavailability. J Nutr Biochem. 2015;26:201–10.

    Google Scholar 

  13. Almeida AF, Borge GIA, Piskula M, Tudose A, Tudoreanu L, Valentova K, et al. Bioavailability of quercetin in humans with a focus on interindividual variation. Compr Rev Food Sci Food Saf. 2018;17:714–31.

    CAS  Google Scholar 

  14. Soni S, Ruhela RK, Medhi B. Nanomedicine in central nervous system (CNS) disorders: a present and future prospective. Adv Pharm Bull. 2016;6:319–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Chowdhury A, Kunjiappan S, Panneerselvam T, Somasundaram B, Bhattacharjee C. Nanotechnology and nanocarrier-based approaches on treatment of degenerative diseases. Int Nano Lett. 2017;7:91–122.

    CAS  Google Scholar 

  16. Le Novere N, Corringer PJ, Changeux JP. The diversity of subunit composition in nAChRs: evolutionary origins, physiologic and pharmacologic consequences. J Neurobiol. 2002;53:447–56.

    PubMed  Google Scholar 

  17. Gotti C, Clementi F, Fornari A, Gaimarri A, Guiducci S, Manfredi I, et al. Structural and functional diversity of native brain neuronal nicotinic receptors. Biochem Pharmacol. 2009;78:703–11.

    CAS  PubMed  Google Scholar 

  18. Hawkins BT, Egleton RD, Davis TP. Modulation of cerebral microvascular permeability by endothelial nicotinic acetylcholine receptors. Am J Physiol Heart Circ Physiol. 2005;289:H212–9.

    CAS  PubMed  Google Scholar 

  19. Lafon M. Rabies virus receptors. J Neurovirol. 2005;11:82–7.

    CAS  PubMed  Google Scholar 

  20. Kumar P, Wu H, McBride JL, Jung KE, Kim MH, Davidson BL, et al. Transvascular delivery of small interfering RNA to the central nervous system. Nature. 2007;448:39–43.

    CAS  PubMed  Google Scholar 

  21. Liu Y, Huang R, Han L, Ke W, Shao K, Ye L, et al. Brain-targeting gene delivery and cellular internalization mechanisms for modified rabies virus glycoprotein RVG29 nanoparticles. Biomaterials. 2009;30:4195–202.

    CAS  PubMed  Google Scholar 

  22. Hua HC, Zhang XM, Mu HJ, Meng QQ, Jiang Y, Wang YY, et al. RVG29-modified docetaxel-loaded nanoparticles for brain-targeted glioma therapy. Int J Pharm. 2018;543:179–89.

    CAS  PubMed  Google Scholar 

  23. You LH, Wang J, Liu TQ, Zhang YL, Han XX, Wang T, et al. Targeted brain delivery of rabies virus glycoprotein 29-modified deferoxamine-loaded nanoparticles reverses functional deficits in Parkinsonian mice. ACS Nano. 2018;12:4123–39.

    CAS  PubMed  Google Scholar 

  24. Oswald M, Geissler S, Goepferich A. Targeting the central nervous system (CNS): a review of rabies virus-targeting strategies. Mol Pharm. 2017;14:2177–96.

    CAS  PubMed  Google Scholar 

  25. Neves AR, Lucio M, Martins S, Lima JL, Reis S. Novel resveratrol nanodelivery systems based on lipid nanoparticles to enhance its oral bioavailability. Int J Nanomedicine. 2013;8:177–87.

    PubMed  PubMed Central  Google Scholar 

  26. Neves AR, Queiroz JF, Reis S. Brain-targeted delivery of resveratrol using solid lipid nanoparticles functionalized with apolipoprotein E. J Nanobiotechnol. 2016;14:27.

    Google Scholar 

  27. Neves AR, Queiroz JF, Weksler B, Romero IA, Couraud PO, Reis S. Solid lipid nanoparticles as a vehicle for brain-targeted drug delivery: two new strategies of functionalization with apolipoprotein E. Nanotechnology. 2015;26:495103.

    PubMed  Google Scholar 

  28. Neves AR, Queiroz JF, Lima SAC, Reis S. Apo E-functionalization of solid lipid nanoparticles enhances brain drug delivery: uptake mechanism and transport pathways. Bioconjug Chem. 2017;28:995–1004.

    CAS  PubMed  Google Scholar 

  29. Weksler B, Romero IA, Couraud PO. The hCMEC/D3 cell line as a model of the human blood brain barrier. Fluids Barriers CNS. 2013;10:16.

    PubMed  PubMed Central  Google Scholar 

  30. Weksler BB, Subileau EA, Perriere N, Charneau P, Holloway K, Leveque M, et al. Blood-brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J: Official Publication FASEB. 2005;19:1872–4.

    CAS  Google Scholar 

  31. Poller B, Gutmann H, Krahenbuhl S, Weksler B, Romero I, Couraud PO, et al. The human brain endothelial cell line hCMEC/D3 as a human blood-brain barrier model for drug transport studies. J Neurochem. 2008;107:1358–68.

    CAS  PubMed  Google Scholar 

  32. Sabateand R, Estelrich J. Stimulatory and inhibitory effects of alkyl bromide surfactants on beta-amyloid fibrillogenesis. Langmuir. 2005;21:6944–9.

    Google Scholar 

  33. Nilsson MR. Techniques to study amyloid fibril formation in vitro. Methods. 2004;34:151–60.

    CAS  PubMed  Google Scholar 

  34. Rocha S, Cardoso I, Borner H, Pereira MC, Saraiva MJ, Coelho M. Design and biological activity of beta-sheet breaker peptide conjugates. Biochem Bioph Res Commun. 2009;380:397–401.

    CAS  Google Scholar 

  35. Jameson LP, Smith NW, Dzyuba SV. Dye-binding assays for evaluation of the effects of small molecule inhibitors on amyloid (abeta) self-assembly. ACS Chem Neurosci. 2012;3:807–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. LeVine H 3rd. Thioflavine T interaction with synthetic Alzheimer's disease beta-amyloid peptides: detection of amyloid aggregation in solution. Protein Sci. 1993;2:404–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Yan Z, Yang Y, Wei X, Zhong J, Wei D, Liu L, et al. Tumor-penetrating peptide mediation: an effective strategy for improving the transport of liposomes in tumor tissue. Mol Pharm. 2014;11:218–25.

    CAS  PubMed  Google Scholar 

  38. Wei X, Zhan C, Chen X, Hou J, Xie C, Lu W. Retro-inverso isomer of Angiopep-2: a stable d-peptide ligand inspires brain-targeted drug delivery. Mol Pharm. 2014;11:3261–8.

    CAS  PubMed  Google Scholar 

  39. Gaumet M, Vargas A, Gurny R, Delie F. Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur J Pharm Biopharm: Official J Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2008;69:1–9.

    CAS  Google Scholar 

  40. Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: structure. Prep Appl Adv Pharm Bull. 2015;5:305–13.

    CAS  Google Scholar 

  41. Freitasand C, Muller RH. Correlation between long-term stability of solid lipid nanoparticles (SLN) and crystallinity of the lipid phase. Eur J Pharm Biopharm: Official J Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 1999;47:125–32.

    Google Scholar 

  42. Burdand JF, Usategui-Gomez M. A colorimetric assay for serum lactate dehydrogenase. Clin Chim Acta; Int J Clin Chem. 1973;46:223–7.

    Google Scholar 

  43. Korzeniewskiand C, Callewaert DM. An enzyme-release assay for natural cytotoxicity. J Immunol Methods. 1983;64:313–20.

    Google Scholar 

  44. Phoolcharoen W, Prehaud C, van Dolleweerd CJ, Both L, da Costa A, Lafon M, et al. Enhanced transport of plant-produced rabies single-chain antibody-RVG peptide fusion protein across an in cellulo blood-brain barrier device. Plant Biotechnol J. 2017;15:1331–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Loureiro JA, Rocha S, Pereira Mdo C. Charged surfactants induce a non-fibrillar aggregation pathway of amyloid-beta peptide. J Pept Sci: Official Publication Eur Pept Soc. 2013;19:581–7.

    CAS  Google Scholar 

  46. Loureiro JA, Gomes B, Fricker G, Cardoso I, Ribeiro CA, Gaiteiro C, et al. Dual ligand immunoliposomes for drug delivery to the brain. Colloid Surface B, Biointerfaces. 2015;134:213–9.

    CAS  Google Scholar 

  47. Loureiro JA, Andrade S, Duarte A, Neves AR, Queiroz JF, Nunes C, et al. Resveratrol and grape extract-loaded solid lipid nanoparticles for the treatment of Alzheimer’s disease. Molecules (Basel, Switzerland). 2017;22:277.

    Google Scholar 

  48. Petkova AT, Ishii Y, Balbach JJ, Antzutkin ON, Leapman RD, Delaglio F, et al. A structural model for Alzheimer’s beta -amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Acad Sci U S A. 2002;99:16742–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Pike CJ, Walencewicz-Wasserman AJ, Kosmoski J, Cribbs DH, Glabe CG, Cotman CW. Structure-activity analyses of beta-amyloid peptides: contributions of the beta 25–35 region to aggregation and neurotoxicity. J Neurochem. 1995;64:253–65.

    CAS  PubMed  Google Scholar 

  50. Torok M, Milton S, Kayed R, Wu P, McIntire T, Glabe CG, et al. Structural and dynamic features of Alzheimer’s Abeta peptide in amyloid fibrils studied by site-directed spin labeling. J Biol Chem. 2002;277:40810–5.

    PubMed  Google Scholar 

  51. Antzutkin ON, Balbach JJ, Tycko R. Site-specific identification of non-beta-strand conformations in Alzheimer’s beta-amyloid fibrils by solid-state NMR. Biophys J. 2003;84:3326–35.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work received financial support from the European Union (FEDER funds) and National Funds (FCT/MEC, Fundação para a Ciência e a Tecnologia and Ministério da Educação e Ciência) under the Partnership Agreement PT2020 UID/QUI/50006/2013 - POCI/01/0145/FEDER/007265. Also from the UID/EQU/00511/2019—Laboratory for Process Engineering, Environment, Biotechnology and Energy—LEPABE, funded by national funds through FCT/MCTES (PIDDAC); Project POCI-01-0145-FEDER-006939, funded by FEDER funds through COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI) and by national funds (PIDDAC) through FCT/MCTES;—Project “LEPABE-2-ECO-INNOVATION”—NORTE-01-0145-FEDER-000005, funded by Norte Portugal Regional Operational Programme (NORTE 2020), under PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). ARN thanks her previous Post-Doc grant under the project NORTE-01-0145-FEDER-000011. ARN also acknowledges ARDITI for her current Post-Doc grant (ARDITI-CQM_2017_011-PDG) under the project M1420-01-0145-FEDER-000005-CQM+ and the CQM strategic program PEst-OE/QUI/UI0674/2019. Andreia Granja thanks FCT for the PhD grant (SFRH/BD/130147/2017). MP thanks FCT for funding through program DL 57/2016 –Norma transitória.

The authors thank Dr. Mariana Andrade (CEMUP, UP) for technical assistance with NMR experiments and Dr. Rui Fernandes (i3S, UP) for expert help with TEM. We are also thankful to Dr. Babette Weksler from Weill Cornell Medical College (New York, USA), Dr. Ignacio A. Romero from The Open University (Milton Keynes, UK) and Dr. Pierre-Olivier Couraud from INSERM (Paris, France) for technical assistance and support with the hCMEC/D3 cell culture.

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.R. Neves.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Quercetin-loaded lipid nanoparticles functionalized with RVG29 were developed;

• No cytotoxicity of nanoparticles was detected in hCMEC/D3 cell line;

• RVG29-nanoparticles clearly increased in 1.5-fold the permeability across the BBB;

• The nanoparticles confer protection against amyloid-beta fibrillation;

• Great potential for neuroprotection in Alzheimer’s disease.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinheiro, R., Granja, A., Loureiro, J. et al. RVG29-Functionalized Lipid Nanoparticles for Quercetin Brain Delivery and Alzheimer’s Disease. Pharm Res 37, 139 (2020). https://doi.org/10.1007/s11095-020-02865-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-020-02865-1

Key Words

Navigation