Skip to main content

Advertisement

Log in

Anticancer Activity Study and Density Functional/Time-Dependent Density Functional Theory (DFT/TD-DFT) Calculations of 2(3),9(10),16(17),23(24)-Tetrakis-(6-Methylpyridin-2-Yloxy)Phthalocyaninato Zn(II)

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Photodynamic therapy (PDT) is one of the major therapeutic methods for the treatment of infectious diseases and cancer. Recently, cell culture has been used to determine the effect of a given substance on various pathological conditions, such as cancer. In this study, we aimed to investigate the effect of a Zn- phthalocyanine (ZnPc) derivative on selected cancer cells via a cell culture medium. Methylthiazole tetrazolium (MTT) assay was applied to evaluate the cytotoxic activity of 2(3),9(10),16(17),23(24)–tetrakis-(6-methylpyridin-2-yloxy)phthalocyaninato Zn(II) on rat glioma cells (C6 glioma), human lung cancer cells (H1299) and human umbilical vein endothelial cells (HUVEC). The levels of the lipid peroxidation were determined by measuring the amount of the thiobarbituric acid reactive substance (TBARS) produced using the TBARS assay. The relationship between the oxidative damage and the effective concentration of cytotoxic ZnPc was determined from the results. The apoptotic and genotoxic effects of the phthalocyanine (Pc) were also investigated. Density functional/time-dependent density functional theory (DFT/TD-DFT) methods were used to determine the molecular excited state properties of the ZnPc and chloroaluminum phthalocyanine (ClAlPc) previously reported by Castilho-Fernandes et al. The computed and experimental data were used to establish a link between the electronic and anticancer properties of the Pcs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Miller JD, Baron ED, Scull H, Hsia A, Berlin JC, McCormick T, Colussi V, Kenney ME, Cooper KD, Oleinick NL (2007) Photodynamic therapy with the phthalocyanine photosensitizer Pc 4: the case experience with preclinical mechanistic and early clinical-translational studies. Toxicol Appl Pharmacol 224:290–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Allen CM, Sharman WM, Van Lier JE (2001) Current status of phthalocyanines in photodynamic therapy of cancer. J Porphyrins Phthalocyanines 5:161–169

    Article  CAS  Google Scholar 

  3. Schmidt J, Kuzyniak W, Berkholz J, Steinemann G, Ogbodu R, Hoffmann B, Nouailies G, Gürek AG, Nitzsche B, Höpfner M (2018) Novel zinc- and silicon-phthalocyanines as photosensitizers for photodynamic therapy of cholangiocarcinoma. Int J Mol Med 42:534–546

    CAS  PubMed  Google Scholar 

  4. Baskaran R, Lee J, Yang S-G (2018) Clinical development of photodynamic agents and therapeutic applications. Biomater Res 22:1–8

    Article  Google Scholar 

  5. van Straten D, Mashayekhi V, de Bruijn HS, Oliveira S, Robinson DJ (2017) Oncologic photodynamic therapy: basic principles, current clinical status and future directions. Cancers 9:1–54

    Google Scholar 

  6. dos Santos AF, de Almeida DRQ, Terra LF, Baptista MS, Labriola L (2019) Photodynamic therapy in cancer treatment – an update review. J Cancer Metastasis Treat 5:1–20

    Google Scholar 

  7. Kawczyk-Krupka A, Bugaj AM, Latos W, Zaremba K, Wawrzyniec K, Sieroń A (2015) Photodynamic therapy in colorectal cancer treatment: the state of the art in clinical trials. Photodiagn Photodyn Ther 12:545–553

    Article  Google Scholar 

  8. Castano AP, Demidova TN, Hamblin MR (2004) Mechanisms in photodynamic therapy: part one – photosensitizers, photochemistry and cellular localization. Photodiagn Photodyn Ther 1:279–293

    Article  CAS  Google Scholar 

  9. Lukšienė Ž (2003) Photodynamic therapy: mechanism of action and ways to improve the efficiency of treatment. Medicina 29:1137–1150

    Google Scholar 

  10. Kobayashi N (1999) Synthesis, optical properties, structures and molecular orbital calculations of subazaporphyrins, subphthalocyanines, subnaphthalocyanines and related compounds. J Porphyrins Phthalocyanines 3:453–467

    Article  CAS  Google Scholar 

  11. Braun A, Tcherniac J (1907) Uber die Producte der Einwirkung von Acetanhydrid auf Phtalimid. Ber Deutsch Chem Ges 40:2709–2714

    Article  CAS  Google Scholar 

  12. Byrne, G.T.; Linstead, R.P.; Lowe, A.R. (1934). “Phthalocyanines. Part I. a new type of synthetic colouring matters”, J. Chem. Soc., 1016-1017

  13. Sanusi K, Antunes E, Nyokong T (2014) Optical nonlinearities in non-peripherally substituted pyridyloxy phthalocyanines: a combined effect of symmetry, ring-strain and demetallation. Dalton Trans 43:999–1010

    Article  CAS  PubMed  Google Scholar 

  14. Sanusi K, Amuhaya EK, Nyokong T (2014) Enhanced optical limiting behavior of an indium phthalocyanine-single-walled carbon nanotube composite: an investigation on the effects of solvents. J Phys Chem C 118:7057–7069

    Article  CAS  Google Scholar 

  15. de la Torre G, Claessens CG, Torres T (2007) Phthalocyanines: old dyes, new materials. Putting color in nanotechnology, Chem Commun, 2000–2015

  16. Martines-Diaz MV, de la Torre G, Torres T (2010) Lighing porphyrins and phthalocyanines for molecular photovoltaics. Chem Commun 46:7090–7108

    Article  Google Scholar 

  17. Wainwright M (1998) Photodynamic antimicrobial chemotherapy (PACT). J Antimicrob Chemother 42:13–28

    Article  CAS  PubMed  Google Scholar 

  18. Chen Z, Zhou S, Chen J, Li L, Hu P, Chen S, Huang M (2014) An effective zinc phthalocyanine derivative for photodynamic antimicrobial chemotherapy. J Lumin 152:103–107

    Article  CAS  Google Scholar 

  19. Managa M, Antunes E, Nyokong T (2014) Conjugates of platinum nanoparticles with gallium tetra-(4-carboxyphenyl) pophyrin and their use in photodynamic antimicrobial chemotherapy when in solution or embedded in electrospun fiber. Polyhedron 76:94–101

    Article  CAS  Google Scholar 

  20. Holland EC (2000) Glioblastoma multiforme: the terminator. Proc Natl Acad Sci 97:6242–6244

    Article  CAS  PubMed  Google Scholar 

  21. Castilho-Fernandes A, Lopes TG, Primo FL, Pinto MR, Tedesco AC (2017) Photodynamic process induced by chloro-aluminium phthalocyanine nanoemulsion in glioblastoma. Photodiagn Photodyn Ther 19:221–228

    Article  CAS  Google Scholar 

  22. Yilmaz Y, Sanusi K (2019) Synthesis and spectroscopic characterization of new phthalocyanine derivatives: application as photocatalysts for the degradation of Orange G. Turk J Chem 43:1006–1016

    Article  CAS  Google Scholar 

  23. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) In Gaussian 03, Revision E.01. Gaussian, Inc., Wallingford CT

    Google Scholar 

  24. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  25. Becke AD (1992) Density-functional thermochemistry. I the effect of the exchange only gradient correction. J Chem Phys 96:2155–2160

    Article  CAS  Google Scholar 

  26. Becke, A.D. (1992). Density-functional thermochemistry. II. The effect of the Perdew-Wang generalized-gradient correlation correction, J Chem Phys 97, 9173–9177

  27. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  28. Maduray K, Odhav B (2013) The in vitro photodynamic effect of laser activated gallium, indium and iron phthalocyanine chlorides on human lung adenocarcinoma cells. J Photochem Photobiol B Biol 128:58–63

    Article  CAS  Google Scholar 

  29. Manoto SL, Abrahamse H (2011) Effect of a newly synthesized Zn sulfophthalocyanine derivative on cell morphology, viability, proliferation, and cytotoxicity in a human lung cancer cell line (A549). Lasers Med Sci 26:523–530

    Article  PubMed  Google Scholar 

  30. Gupta S, Dwarakanath BS, Muralidhar K, Koru-Senguland T, Jain V (2010) Non-monotonic changes in clonogenic cell survival induced by disulphonated aluminum phthalocyanine photodynamic treatment in a human glioma cell line. J Transl Med 8(43):1–14

    Google Scholar 

  31. Wätjen W, Beyersmann D (2004) Cadmium-induced apoptosis in C6 gliomacells: influence of oxidativestress. Biometals 17:65–78

    Article  PubMed  Google Scholar 

  32. Cevatemre B (2012) Fenretinid ve İndol-3-Karbinol Kombinasyonunun Meme Kanseri Hücre Soyları Üzerindeki Sitotoksik/Apoptotik Etkilerinin Araştırılması, Yüksek Lisans Tezi, Uludağ Üniversitesi, Bursa

  33. Hodgkinson N, Kruger CA, Mokwena M, Abrahamse H (2017) Cervical cancer cells (HeLa) response to photodynamic therapy using a zinc phthalocyanine photosensitizer. J Photochem Photobiol B Biol 177:32–38

    Article  CAS  Google Scholar 

  34. Sanusi SO, Antunes E, Nyokong T (2013) Nonlinear optical behavior of metal octaphenoxy phthalocyanines: effect of distortion caused by the central metal. J Porphyrins Phthalocyanines 17:920–927

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was partly supported by Gaziantep University (Project number FEF.YLT.17.01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yusuf Yilmaz or Kayode Sanusi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karagöz, I.D., Yilmaz, Y. & Sanusi, K. Anticancer Activity Study and Density Functional/Time-Dependent Density Functional Theory (DFT/TD-DFT) Calculations of 2(3),9(10),16(17),23(24)-Tetrakis-(6-Methylpyridin-2-Yloxy)Phthalocyaninato Zn(II). J Fluoresc 30, 1151–1160 (2020). https://doi.org/10.1007/s10895-020-02584-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-020-02584-1

Keywords

Navigation