Skip to main content
Log in

Complete Genome Sequence and Carbohydrates-Active EnZymes (CAZymes) Analysis of Lactobacillus paracasei DTA72, a Potential Probiotic Strain with Strong Capability to Use Inulin

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The whole genome sequence of Lactobacillus paracasei DTA72, isolated from healthy infant feces, is reported, along with the Carbohydrates-Active enZymes (CAZymes) analysis and an in silico safety assessment. Strain DTA72 had previously demonstrated some interesting potential probiotic features, such as a good resistance to gastrointestinal conditions and an anti-Listeria activity. The 3.1 Mb sequenced genome consists of 3116 protein-coding sequences distributed on 340 SEED subsystems. In the present study, we analyzed the fermentation capability of strain DTA72 on six different carbohydrate sources, namely, glucose, fructose, lactose, galactose, xylose, and inulin by using phenotypical and genomic approaches. Interestingly, L. paracasei DTA72 evidenced the best growth performances on inulin with a much shorter lag phase and higher number of cells at the stationary phase in comparison with all the sugars tested. The CAZyme analysis using the predicted amino acid sequences detected 80 enzymes, distributed into the five CAZymes classes. Moreover, the in silico analysis revealed the absence of blood hemolytic genes, transmissible antibiotic resistances, and plasmids in DTA72. The results described in this study, together with those previously reported and particularly the strong capability to utilize inulin as energy source, make DTA72 a very interesting potential probiotic strain to be considered for the production of synbiotic foods. The complete genome data have been deposited in GenBank under the accession number WUJH00000000.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Campanaro S, Treu L, Vendramin V, Bovo B, Giacomini A, Corich V (2014) Metagenomic analysis of the microbial community in fermented grape marc reveals that Lactobacillus fabifermentans is one of the dominant species: insights into its genome structure. Appl Microbiol Biotechnol 98:6015–6037. https://doi.org/10.1007/s00253-014-5795-3

    Article  PubMed  CAS  Google Scholar 

  2. Zhang Di, Di Z, Shiqi Z, Elena G, Daniela Z, Valeria S, Soowon L, Chong L, Marina E (2018) Isolation and characterization of new probiotic strains from Chinese babies. J Clin Gastroenterol 52:S27–S34. https://doi.org/10.1097/mcg.0000000000001113

    Article  PubMed  CAS  Google Scholar 

  3. Guerra AF, Junior WJFL, Oliveira G, dos Santos C, Andrighetto AG, Corich V, Giacomini A, Luchese RH (2018) Lactobacillus paracasei probiotic properties and survivability under stress-induced by processing and storage of ice cream bar or ice-lolly. Ciência Rural. https://doi.org/10.1590/0103-8478cr20170601

    Article  Google Scholar 

  4. Heller KJ (2001) Probiotic bacteria in fermented foods: product characteristics and starter organisms. Am J Clin Nutr 73:374s–379s. https://doi.org/10.1093/ajcn/73.2.374s

    Article  PubMed  CAS  Google Scholar 

  5. Honda H, Yajima N, Saito T (2012) Characterization of lactose utilization and β-Galactosidase in Lactobacillus brevis KB290, the hetero-fermentative lactic acid bacterium. Curr Microbiol 65:679–685. https://doi.org/10.1007/s00284-012-0216-2

    Article  PubMed  CAS  Google Scholar 

  6. Sista Kameshwar AK, Qin W (2018) Comparative study of genome-wide plant biomass-degrading CAZymes in white rot, brown rot and soft rot fungi. Mycology 9:93–105. https://doi.org/10.1080/21501203.2017.1419296

    Article  PubMed  CAS  Google Scholar 

  7. Collins M, Gibson G (1057s) Probiotics, prebiotics, and synbiotics: approaches for modulating the microbial ecology of the gut. Am J Clin Nutr 69(5):1052s–1057s. https://doi.org/10.1093/ajcn/69.5.1052s

    Article  PubMed  CAS  Google Scholar 

  8. Sabater-Molina M, Larqué E, Torrella F, Zamora S (2009) Dietary fructooligosaccharides and potential benefits on health. J Physiol Biochem 65:315–328. https://doi.org/10.1007/BF03180584

    Article  PubMed  CAS  Google Scholar 

  9. Kip P, Meyer D, Jellemac H (2006) Inulins improve sensoric and textural properties of low-fat yoghurts. Int Dairy J. https://doi.org/10.1016/j.idairyj.2005.10.011

    Article  Google Scholar 

  10. O’Bryan C, Pak D, Crandall P, Lee SO, Ricke SC (2013) The role of prebiotics and probiotics in human health. J Prob Health 1:2. https://doi.org/10.4172/2329-8901.1000108

    Article  Google Scholar 

  11. Tarrah A, da Silva DV, de Castilhos J, Pakroo S, Wilson J, Luchese H, Guerra A, Rochele C, Righetto D, Corich V, Giacomini A (2019) Probiotic potential and biofilm inhibitory activity of Lactobacillus casei group strains isolated from infant feces. J Funct Foods 54:489–497. https://doi.org/10.1016/j.jff.2019.02.004

    Article  CAS  Google Scholar 

  12. Tarrah A, Treu L, Giaretta S, da Silva DV, Corich V, Giacomini A (2018) Differences in carbohydrates utilization and antibiotic resistance between Streptococcus macedonicus and Streptococcus thermophilus strains isolated from dairy products in Italy. Curr Microbiol 1–11:1334–1344. https://doi.org/10.1007/s00284-018-1528-7

    Article  CAS  Google Scholar 

  13. Steuernagel B, Periyannan SK, Hernández-Pinzón I et al (2016) Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nat Biotechnol 34:652. https://doi.org/10.1038/nbt.3543

    Article  PubMed  CAS  Google Scholar 

  14. Aziz RK, Bartels D, Best AA et al (2008) The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75. https://doi.org/10.1186/1471-2164-9-75

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. van Heel AJ, de Jong A, Song C et al (2018) BAGEL4: a user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Res 46:W278–W281. https://doi.org/10.1093/nar/gky383

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Grant JR, Stothard P (2008) The CGView server : a comparative genomics tool for circular genomes. Nucleic Acids Res 36:181–184. https://doi.org/10.1093/nar/gkn179

    Article  CAS  Google Scholar 

  17. Arndt D, Grant JR, Marcu A et al (2016) PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 44:1–6. https://doi.org/10.1093/nar/gkw387

    Article  CAS  Google Scholar 

  18. Couvin D, Bernheim A, Toffano-Nioche C et al (2018) CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res 46:W246–W251. https://doi.org/10.1093/nar/gky425

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Carattoli A, Zankari E, García-Fernández A et al (2014) In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 58:3895–3903. https://doi.org/10.1128/AAC.02412-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Zankari E, Hasman H, Cosentino S et al (2012) Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 67:2640–2644. https://doi.org/10.1093/jac/dks261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Yin Y, Mao X, Yang J et al (2012) dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 40:W445–W451. https://doi.org/10.1093/nar/gks479

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Vendramin V, Treu L, Campanaro S, Lombardi A, Corich V, Giacomini A (2017) Genome comparison and physiological characterization of eight Streptococcus thermophilus strains isolated from Italian dairy products. Food Microbiol 63:47–57. https://doi.org/10.1016/j.fm.2016.11.002

    Article  PubMed  CAS  Google Scholar 

  23. Herrero M, Mayo B, González B, Suárez JE (1996) Evaluation of technologically important traits in lactic acid bacteria isolated from spontaneous fermentations. J Appl Bacteriol 81:565–570. https://doi.org/10.1111/j.1365-2672.1996.tb03548.x

    Article  Google Scholar 

  24. Singh RS, Singh RP (2010) Production of fructooligosaccharides from inulin by endoinulinases and their prebiotic potential. Food Technol Biotechnol 48(4):435–450

    CAS  Google Scholar 

  25. Kolida S, Tuohy K, Gibson GR (2002) Prebiotic effects of inulin and oligofructose. Br J Nutr 87:S193. https://doi.org/10.1079/BJN/2002537

    Article  PubMed  CAS  Google Scholar 

  26. Watson D, O’Connell Motherway M, Schoterman MHC et al (2013) Selective carbohydrate utilization by lactobacilli and bifidobacteria. J Appl Microbiol 114:1132–1146. https://doi.org/10.1111/jam.12105

    Article  PubMed  CAS  Google Scholar 

  27. Plumed-Ferrer C, Koistinen KM, Tolonen TL et al (2008) Comparative study of sugar fermentation and protein expression patterns of two Lactobacillus plantarum strains grown in three different media. Appl Environ Microbiol 74:5349–5358. https://doi.org/10.1128/AEM.00324-08

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Tarrah A, Noal V, Treu L, Giaretta S, da Silva DV, Corich V, Giacomini A (2018) Comparison of growth kinetics at different temperatures of Streptococcus macedonicus and Streptococcus thermophilus strains of dairy origin. J Dairy Sci 101:7812–7816. https://doi.org/10.3168/jds.2018-14731

    Article  PubMed  CAS  Google Scholar 

  29. Tarrah A, Noal V, Giaretta S, Treu L, da Silva DV, Corich V, Giacomini A (2018) Effect of different initial pH on the growth of Streptococcus macedonicus and Streptococcus thermophilus strains. Int Dairy J 86:65–68. https://doi.org/10.1016/j.idairyj.2018.07.003

    Article  CAS  Google Scholar 

  30. de Vin F, Radstrom P, Herman L, De Vuyst L (2005) Molecular and biochemical analysis of the galactose phenotype of dairy Streptococcus thermophilus strains reveals four different fermentation profiles. Appl Environ Microbiol 71:3659–3667. https://doi.org/10.1128/AEM.71.7.3659-3667.2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Hutkins RW, Morris HA (1987) Carbohydrate metabolism by Streptococcus thermophilus: a review. J Food Prot 50:876–884. https://doi.org/10.4315/0362-028X-50.10.876

    Article  PubMed  CAS  Google Scholar 

  32. Wu Q, Cheung CKW, Shah NP (2015) Towards galactose accumulation in dairy foods fermented by conventional starter cultures: challenges and strategies. Trends Food Sci Technol 41:24–36. https://doi.org/10.1016/j.tifs.2014.08.010

    Article  CAS  Google Scholar 

  33. Furlaneto-Maia L, Ramalho R, Rocha KR, Furlaneto MC (2020) Antimicrobial activity of enterocins against Listeria sp. and other food spoilage bacteria. Biotechnol Lett. https://doi.org/10.1007/s10529-020-02810-7

    Article  PubMed  Google Scholar 

  34. Khan H, Flint SH, Yu P (2013) Determination of the mode of action of enterolysin A, produced by Enterococcus faecalis B 9510. J Appl Microbiol 115:484–494. https://doi.org/10.1111/jam.12240

    Article  PubMed  CAS  Google Scholar 

  35. Chylinski K, Makarova KS, Charpentier E, Koonin EV (2014) Classification and evolution of type II CRISPR-Cas systems. Nucleic Acids Res 42:6091–6105. https://doi.org/10.1093/nar/gku241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Arslan Z, Wurm R, Brener O et al (2013) Double-strand DNA end-binding and sliding of the toroidal CRISPR-associated protein Csn2. Nucleic Acids Res 41:6347–6359. https://doi.org/10.1093/nar/gkt315

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Contesini FJ, de Lima EA, Mandelli F et al (2018) Carbohydrate active enzymes applied in the production of functional oligosaccharides. Encyclopedia of food chemistry. Elsevier, Amsterdam, pp 30–34

    Google Scholar 

  38. Park Y-J, Jeong Y-U, Kong W-S (2018) Genome sequencing and carbohydrate-active enzyme (CAZyme) repertoire of the white rot fungus Flammulina elastica. Int J Mol Sci 19:2379

    Article  CAS  Google Scholar 

  39. Lijun W, Zhang G, Xu H et al (2019) Metagenomic analyses of microbial and carbohydrate-active enzymes in the rumen of holstein cows fed different forage-to-concentrate ratios. Front Microbiol 10:649. https://doi.org/10.3389/fmicb.2019.00649

    Article  Google Scholar 

  40. Rajendran CK, Subin R, Okolie CL, Udenigwe CC, Mason B (2017) Structural features underlying prebiotic activity of conventional and potential prebiotic oligosaccharides in food and health. J Food Biochem 41:e12389. https://doi.org/10.1111/jfbc.12389

    Article  CAS  Google Scholar 

  41. Pokusaeva K, Fitzgerald GF, van Sinderen D (2011) Carbohydrate metabolism in Bifidobacteria. Genes Nutr 6:285–306. https://doi.org/10.1007/s12263-010-0206-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Holscher HD (2017) Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes 8:172–184. https://doi.org/10.1080/19490976.2017.1290756

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Qiu Y, Zhu Y, Zhan Y et al (2019) Systematic unravelling of the inulin hydrolase from Bacillus amyloliquefaciens for efficient conversion of inulin to poly-(γ-glutamic acid). Biotechnol Biofuels 12:145. https://doi.org/10.1186/s13068-019-1485-9

    Article  PubMed  PubMed Central  Google Scholar 

  44. Scott KP, Martin JC, Chassard C et al (2011) Substrate-driven gene expression in Roseburia inulinivorans: importance of inducible enzymes in the utilization of inulin and starch. Proc Natl Acad Sci 108:4672–4679. https://doi.org/10.1073/pnas.1000091107

    Article  PubMed  Google Scholar 

  45. Boraston AB, Bolam DN, Gilbert HJ, Davies GJ (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382:769–781. https://doi.org/10.1042/BJ20040892

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Boger MCL, van Bueren AL, Dijkhuizen L (2018) Cross-feeding among probiotic bacterial strains on prebiotic inulin involves the extracellular exo-inulinase of Lactobacillus paracasei Strain W20. Appl Environ Microbiol 84:e01539–e1618. https://doi.org/10.1128/AEM.01539-18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work has been funded in part by the Ministero dell’Università e della Ricerca Scientifica (MIUR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viviana Corich.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarrah, A., Pakroo, S., Lemos Junior, W.J.F. et al. Complete Genome Sequence and Carbohydrates-Active EnZymes (CAZymes) Analysis of Lactobacillus paracasei DTA72, a Potential Probiotic Strain with Strong Capability to Use Inulin. Curr Microbiol 77, 2867–2875 (2020). https://doi.org/10.1007/s00284-020-02089-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02089-x

Navigation