Skip to main content
Log in

A promising approach toward efficient isolation of the exosomes by core–shell PCL-gelatin electrospun nanofibers

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Exosomes as cell-derived vesicles are promising biomarkers for noninvasive and early detection of different types of cancer. However, a straightforward and cost-effective technique for isolation of exosomes in routine clinical settings is still challenging. Herein, we present for the first time, a novel coaxial nanofiber structure for the exosome isolation from body fluids with high efficiency. Coaxial nanofiber structure is composed of polycaprolactone polymer as core and a thin layer of gelatin (below 10 nm) as the shell. The thermo-sensitive thin layer of gelatin can efficiently release the captured exosome by specific antibody namely, CD63, whenever its temperature raised to the physiological temperature of 37 °C. Moreover, the thin layer of gelatin induces less contamination to separated exosomes. The interconnected micro-pores of electrospun nanofibrous membrane insurances large surface area for immobilization of specific antibody for efficient exosome capturing. The efficacy of exosome isolation is determined by direct ELISA and compared with ultracentrifugation technique. For the exosome isolation, it was observed that over 87% of exosomes existed in the culture medium can be effectively isolated by coaxial electrospun nanofibers with the average thickness of 50 µm. Therefore, this promising technique can be substituted for the traditional techniques for exosome isolation which are mostly suffering from low efficacy, high cost, and troublesome process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

DI:

Deionized

EDC:

1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide

ELISA:

Enzyme-linked immunosorbent assay

FBS:

Fetal bovine serum

FTIR:

Fourier-transform infrared spectroscopy

HRP:

Horseradish peroxidase

mRNA:

Messenger ribonucleic acid

NHS:

N-Hydroxysuccinimide

NTA:

Nanoparticle tracking analysis

PBS:

Phosphate-buffered saline

PCa:

Prostate cancer

PCL:

Polycaprolacton

PSA:

Prostate specific antigen

SEM:

Scanning electron microscope

TEM:

Transmission electron microscopy

TFE:

2,2,2-Trifluoroethanol

TMB:

3,3′,5,5′-Tetramethylbenzidine

UV:

Ultra violet

References

  1. Beheshti M, Langsteger W, Rezaee A (2017) PET/CT in cancer: an interdisciplinary approach to individualized imaging. Elsevier Health Sciences, Amsterdam

    Google Scholar 

  2. Pan J et al (2017) Exosomes in diagnosis and therapy of prostate cancer. Oncotarget 8(57):97693

    Article  PubMed  PubMed Central  Google Scholar 

  3. Perkins GL et al (2003) Serum tumor markers. Am Fam Phys 68(6):1075–1082

    Google Scholar 

  4. Duijvesz D et al (2011) Exosomes as biomarker treasure chests for prostate cancer. Eur Urol 59(5):823–831

    Article  PubMed  CAS  Google Scholar 

  5. Zeringer E et al (2015) (2015) Strategies for isolation of exosomes. Cold Spring Harb Protoc 4:319–323. https://doi.org/10.1101/pdb.top074476

    Article  Google Scholar 

  6. Lopez-Verrilli MA (2013) Exosomes: mediators of communication in eukaryotes. Biol Res 46(1):5–11

    Article  PubMed  CAS  Google Scholar 

  7. Chen Z et al (2018) Detection of exosomes by ZnO nanowires coated three-dimensional scaffold chip device. Biosens Bioelectron 122:211–216

    Article  PubMed  CAS  Google Scholar 

  8. Doyle LM, Wang MZ (2019) Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells 8(7):727

    Article  PubMed Central  CAS  Google Scholar 

  9. Shiddiky MJ et al (2014) Detecting exosomes specifically: a microfluidic approach based on alternating current electrohydrodynamic induced nanoshearing. In: 18th international conference on miniaturized systems for chemistry and life sciences, MicroTAS 2014. MicroTAS

  10. Sinha A et al (2014) In-depth proteomic analyses of ovarian cancer cell line exosomes reveals differential enrichment of functional categories compared to the NCI 60 proteome. Biochem Biophys Res Commun 445(4):694–701

    Article  PubMed  CAS  Google Scholar 

  11. Witwer KW et al (2013) Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles 2(1):20360

    Article  CAS  Google Scholar 

  12. Steinbichler TB et al (2017) The role of exosomes in cancer metastasis. In: Seminars in cancer biology. Elsevier, Amsterdam

  13. Zöller M (2009) Tetraspanins: push and pull in suppressing and promoting metastasis. Nat Rev Cancer 9(1):40–55

    Article  PubMed  CAS  Google Scholar 

  14. María Y-M, Vales-Gómez M. Exosome detection and characterization based on flow cytometry

  15. Oliveira-Rodríguez M et al (2016) Development of a rapid lateral flow immunoassay test for detection of exosomes previously enriched from cell culture medium and body fluids. J Extracell Vesicles 5(1):31803

    Article  PubMed  CAS  Google Scholar 

  16. Chen C et al (2010) Microfluidic isolation and transcriptome analysis of serum microvesicles. Lab Chip 10(4):505–511

    Article  PubMed  CAS  Google Scholar 

  17. Chen Z et al (2016) Electrospun nanofibers for cancer diagnosis and therapy. Biomater Sci 4(6):922–932

    Article  PubMed  CAS  Google Scholar 

  18. Jo S et al (2014) Conjugated polymer dots-on-electrospun fibers as a fluorescent nanofibrous sensor for nerve gas stimulant. ACS Appl Mater Interfaces 6(24):22884–22893

    Article  PubMed  CAS  Google Scholar 

  19. Nicolini AM, Fronczek CF, Yoon J-Y (2015) Droplet-based immunoassay on a ‘sticky’ nanofibrous surface for multiplexed and dual detection of bacteria using smartphones. Biosens Bioelectron 67:560–569

    Article  PubMed  CAS  Google Scholar 

  20. Xue J et al (2017) Electrospun nanofibers: new concepts, materials, and applications. Acc Chem Res 50(8):1976–1987

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Yang T et al (2017) Surface-engineered quantum dots/electrospun nanofibers as a networked fluorescence aptasensing platform toward biomarkers. Nanoscale 9(43):17020–17028

    Article  PubMed  CAS  Google Scholar 

  22. Yang T et al (2018) Ratiometrically fluorescent electrospun nanofibrous film as a Cu2+-mediated solid-phase immunoassay platform for biomarkers. Anal Chem 90(16):9966–9974

    Article  PubMed  CAS  Google Scholar 

  23. Choktaweesap N et al (2007) Electrospun gelatin fibers: effect of solvent system on morphology and fiber diameters. Polym J 39(6):622–631

    Article  CAS  Google Scholar 

  24. Feng C et al (2019) Electrospun nanofibers with core-shell structure for treatment of bladder regeneration. Tissue Eng Part A 25(17–18):1289–1299

    Article  PubMed  CAS  Google Scholar 

  25. Zhang Y et al (2004) Preparation of core–shell structured PCL-r-gelatin bi-component nanofibers by coaxial electrospinning. Chem Mater 16(18):3406–3409

    Article  CAS  Google Scholar 

  26. Zhang Y et al (2005) Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res Part B Appl Biomater Off J Soc Biomater Jpn Soc Biomater Aust Soc Biomater Korean Soc Biomater 72(1):156–165

    Google Scholar 

  27. Mahmoudifard M et al (2016) Efficient protein immobilization on polyethersolfone electrospun nanofibrous membrane via covalent binding for biosensing applications. Mater Sci Eng C 58:586–594

    Article  CAS  Google Scholar 

  28. Mahmoudifard M, Vossoughi M (2019) Different PES nanofibrous membrane parameters effect on the efficacy of immunoassay performance. Polym Adv Technol 30(8):1968–1977

    Article  CAS  Google Scholar 

  29. Mahmoudifard M, Vossoughi M, Soleimani M (2019) Different types of electrospun nanofibers and their effect on microfluidic-based immunoassay. Polym Adv Technol 30(4):973–982

    Article  CAS  Google Scholar 

  30. Mahmoudifard M et al (2018) Electrospun polyethersolfone nanofibrous membrane as novel platform for protein immobilization in microfluidic systems. J Biomed Mater Res B Appl Biomater 106(3):1108–1120

    Article  PubMed  CAS  Google Scholar 

  31. Mahmoudifard M, Soleimani M, Vossoughi M (2017) Ammonia plasma-treated electrospun polyacrylonitryle nanofibrous membrane: the robust substrate for protein immobilization through glutaraldhyde coupling chemistry for biosensor application. Sci Rep 7(1):1–14

    Article  CAS  Google Scholar 

  32. Djagny KB, Wang Z, Xu S (2001) Gelatin: a valuable protein for food and pharmaceutical industries. Crit Rev Food Sci Nutr 41(6):481–492

    Article  PubMed  CAS  Google Scholar 

  33. Mohiti-Asli M, Loboa E (2016) Nanofibrous smart bandages for wound care. In: Wound healing biomaterials. Elsevier, Amsterdam, pp 483–499

  34. Wan Y et al (2009) Thermophysical properties of polycaprolactone/chitosan blend membranes. Thermochim Acta 487(1–2):33–38

    Article  CAS  Google Scholar 

  35. Lim YC et al (2011) Micropatterning and characterization of electrospun poly (ε-caprolactone)/gelatin nanofiber tissue scaffolds by femtosecond laser ablation for tissue engineering applications. Biotechnol Bioeng 108(1):116–126

    Article  PubMed  CAS  Google Scholar 

  36. Gautam S et al (2014) Surface modification of nanofibrous polycaprolactone/gelatin composite scaffold by collagen type I grafting for skin tissue engineering. Mater Sci Eng, C 34:402–409

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was made possible by a grant with the number of 704 from the National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matin Mahmoudifard.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barati, F., Farsani, A.M. & Mahmoudifard, M. A promising approach toward efficient isolation of the exosomes by core–shell PCL-gelatin electrospun nanofibers. Bioprocess Biosyst Eng 43, 1961–1971 (2020). https://doi.org/10.1007/s00449-020-02385-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02385-7

Keywords

Navigation