Skip to main content

Advertisement

Log in

Electrochemical detection of natural organic matter (humic acid) and splitting of hydrogen peroxide on a micropore 3D catalytic polysulfone–copper oxide nanocomposite surface

  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The development of new metalloplastic material from the combination of an alkaline-fused dehydrated glucose–copper (II) chloride, carbon soot, and polysulfone and the evaluation of its potential for the electrochemical detection of a pro-carcinogenic humic acid in water is reported. Excellent detection limit greater than 1 pico-part-per-million (order of 10–13 mg/L) was achieved, a value that proved to be first-of-its-kind till date. Transfer coefficients between 0.8 and 1.0 were realized. The new material showed some potential for splitting hydrogen peroxide to oxygen and thus may be explored for energy application in addition to its use as a water quality monitoring probe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
TABLE I.

Similar content being viewed by others

References

  1. T. Hwang, J.S. Oh, W. Yim, J. Do Nam, C. Bae, H.I. Kim, and K.J. Kim: Ultrafiltration using graphene oxide surface-embedded polysulfone membranes. Sep. Purif. Technol. 166, 41–47 (2016).

    Article  CAS  Google Scholar 

  2. S.F. Liu, L.C.H. Moh, and T.M. Swager: Single-walled carbon nanotube–metalloporphyrin chemiresistive gas sensor arrays for volatile organic compounds. Chem. Mater. 27, 3560–3563 (2015).

    Article  CAS  Google Scholar 

  3. I. Tiwari and M. Singh: Preparation and characterization of methylene blue-SDS-multiwalled carbon nanotubes nanocomposite for the detection of hydrogen peroxide. Microchim. Acta 174, 223–230 (2011).

    Article  CAS  Google Scholar 

  4. E. Singh, M. Meyyappan, and H.S. Nalwa: Flexible graphene-based wearable gas and chemical sensors. ACS Appl. Mater. Interfaces 9, 34544–34586 (2017).

    Article  CAS  Google Scholar 

  5. G.T. Chandran, X. Li, A. Ogata, and R.M. Penner: Electrically transduced sensors based on nanomaterials (2012–2016). Anal. Chem. 89, 249–275 (2017).

    Article  CAS  Google Scholar 

  6. I. Tiwari and M. Gupta: Neutral red interlinked gold nanoparticles/multiwalled carbon nanotubes hybrid nanomaterial and its application for the detection of NADH. Mater. Res. Bull. 49, 94–101 (2014).

    Article  CAS  Google Scholar 

  7. F. Zhou, D. Xing, Z. Ou, B. Wu, D.E. Resasco, and W.R. Chen: Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes. J. Biomed. Opt. 14, 021009 (2009).

    Article  Google Scholar 

  8. D.R. Shobha Jeykumari and S. Sriman Narayanan: A novel nanobiocomposite based glucose biosensor using neutral red functionalized carbon nanotubes. Biosens. Bioelectron. 23, 1404–1411 (2008).

    Article  CAS  Google Scholar 

  9. Y. Qing, W. Zhou, F. Luo, and D. Zhu: Epoxy-silicone filled with multi-walled carbon nanotubes and carbonyl iron particles as a microwave absorber. Carbon 48, 4074–4080 (2010).

    Article  CAS  Google Scholar 

  10. X. Wang, A. Ugur, H. Goktas, N. Chen, M. Wang, N. Lachman, E. Kalfon-Cohen, W. Fang, B.L. Wardle, and K.K. Gleason: Room temperature resistive volatile organic compound sensing materials based on a hybrid structure of vertically aligned carbon nanotubes and conformal oCVD/iCVD polymer coatings. ACS Sensors 1, 374–383 (2016).

    Article  CAS  Google Scholar 

  11. H. Wang, K. Lin, B. Jing, G. Krylova, G.E. Sigmon, P. Mcginn, Y. Zhu, and C. Na: Removal of oil droplets from contaminated water using magnetic carbon nanotubes. Water Res. 47, 4198–4205 (2013).

    Article  CAS  Google Scholar 

  12. A. Al Faraj, A.S. Shaik, R. Halwani, and A. Alfuraih: Magnetic targeting and delivery of drug-loaded SWCNTs theranostic nanoprobes to lung metastasis in breast cancer animal model: noninvasive monitoring using magnetic resonance imaging. Mol. Imaging Biol. 18, 315–324 (2016).

    Article  Google Scholar 

  13. Z. Yang, Z. Li, M. Xu, Y. Ma, J. Zhang, Y. Su, F. Gao, H. Wei, and L. Zhang: Controllable synthesis of fluorescent carbon dots and their detection application as nanoprobes citation. Nano-Micro Lett. 5, 247–259 (2013).

    Article  Google Scholar 

  14. S.Y. Park, H.U. Lee, E.S. Park, S.C. Lee, J.-W. Lee, S.W. Jeong, C.H. Kim, Y.-C. Lee, Y.S. Huh, and J. Lee: Photoluminescent green carbon nanodots from food waste-derived sources: large-scale synthesis, properties and bio-medical Applications. ACS Appl. Mater. Interfaces 6, 3365–3370 (2014).

    Article  CAS  Google Scholar 

  15. P. Janknecht, F. Proenc, and A. Rodrigues: Quantification of humic acids in surface water: effects of divalent cations, pH, and filtration. J. Environ. Monit. 11, 377–382 (2009).

    Article  Google Scholar 

  16. P. Akhtar, C.O. Too, and G.G. Wallace: Detection of haloacetic acids at conductive electroactive polymer-modified microelectrodes. Anal. Chim. Acta 341, 141–153 (1997).

    Article  CAS  Google Scholar 

  17. F. de Souza and S.R. Braganca: Extraction and characterization of humic acid from coal for the application as dispersant of ceramic powders. J. Mater. Res. Technol. 7, 254–260 (2018).

    Article  Google Scholar 

  18. Y. Tang, Y. Yang, D. Cheng, B. Gao, Y. Wan, and Y.C. Li: Value-added humic acid derived from lignite using novel solid-phase activation process with Pd/CeO2 nanocatalyst: a physiochemical study. ACS Sustain. Chem. Eng. 5, 10099–10110 (2017).

    Article  CAS  Google Scholar 

  19. A. Javanshah and A. Saidi: Determination of humic acid by spectrophotometric analysis in the soils. Int. J. Adv. Biotechnol. Res. 7, 19–23 (2016).

    Google Scholar 

  20. X. Cheng, L. Zhao, X. Wang, and J. Lin: Sensitive monitoring of humic acid in various aquatic environments with acidic cerium chemiluminescence detection. Anal. Sci. 23, 1189–1193 (2007).

    Article  CAS  Google Scholar 

  21. C. Ma, M. Chen, H. Liu, K. Wu, H. He, and K. Wang: A rapid method for the detection of humic acid based on the poly(thymine)-templated copper nanoparticles. Chin. Chem. Lett. 29, 136–138 (2018).

    Article  CAS  Google Scholar 

  22. E. Vanarsdale, C. Tsao, Y. Liu, C. Chen, G.F. Payne, and W.E. Bentley: Redox-based synthetic biology enables electrochemical detection of the herbicides dicamba and roundup via rewired Escherichia coli. ACS Sensors 4, 1180–1184 (2019).

    Article  CAS  Google Scholar 

  23. D. Akyüz and A. Koca: An electrochemical sensor for the detection of pesticides based on the hybrid of manganese phthalocyanine and polyaniline. Sens. Actuat. B. Chem. 283, 848–856 (2019).

    Article  Google Scholar 

  24. X. Lu, L. Tao, Y. Li, H. Huang, and F. Gao: A highly sensitive electrochemical platform based on the bimetallic Pd @ Au nanowires network for organophosphorus pesticides detection. Sens. Actuat. B. Chem. 284, 103–109 (2019).

    Article  CAS  Google Scholar 

  25. A. Khan, T.A. Sherazi, Y. Khan, S. Li, S.A.R. Naqvi, and Z. Cui: Fabrication and characterization of polysulfone/modified nanocarbon black composite antifouling ultrafiltration membranes. J. Membr. Sci. 554, 71–82 (2018).

    Article  CAS  Google Scholar 

  26. M.R. Esfahani, N. Koutahzadeh, A.R. Esfahani, M.D. Firouzjaei, B. Anderson, and L. Peck: A novel gold nanocomposite membrane with enhanced permeation, rejection and self-cleaning ability. J. Membr. Sci. 573, 309–319 (2019).

    Article  CAS  Google Scholar 

  27. K. Zhang, J. Xiong, C. Yan, and A. Tang: In-situ measurement of electrode kinetics in porous electrode for vanadium flow batteries using symmetrical cell design. Appl. Energy 272, 115093 (2020).

    Article  CAS  Google Scholar 

  28. E. Laviron: General expression of the linear potential sweep voltammogram in the case of diffusion less electrochemical systems. J. Electroanal. Chem. 101, 19–28 (1979).

    Article  CAS  Google Scholar 

  29. C. Amatore, Y. Bouret, E. Maisonhaute, J.I. Goldsmith, and H.D. Abruna: Precise adjustement of nanometric-scale diffusion layers within a redox dendrimer molecule by ultrafast cyclic voltammetry: an electrochemical nanometric microtome. Chem. Eur. J. 7, 2206–2226 (2001).

    Article  CAS  Google Scholar 

  30. K.R. Ward, N.S. Lawrence, R.S. Hartshorne, and R.G. Compton: The theory of cyclic voltammetry of electrochemically heterogeneous surfaces: comparison of different models for surface geometry and applications to highly ordered pyrolytic graphite. Phys. Chem. Chem. Phys. 14, 7264–7275 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are grateful to the Institute of Nanotechnology and Water Sustainability Research Unit (iNanoWS) of the University of South Africa for the facility and financial supports.

Author information

Authors and Affiliations

Authors

Supplementary material

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2020.61.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakayode, O.J., Nkambule, T.T. Electrochemical detection of natural organic matter (humic acid) and splitting of hydrogen peroxide on a micropore 3D catalytic polysulfone–copper oxide nanocomposite surface. MRS Communications 10, 519–527 (2020). https://doi.org/10.1557/mrc.2020.61

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2020.61

Navigation