Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Dynamic single-cell phenotyping of immune cells using the microfluidic platform DropMap

An Author Correction to this article was published on 13 January 2021

This article has been updated

Abstract

Characterization of immune responses is currently hampered by the lack of systems enabling quantitative and dynamic phenotypic characterization of individual cells and, in particular, analysis of secreted proteins such as cytokines and antibodies. We recently developed a simple and robust microfluidic platform, DropMap, to measure simultaneously the kinetics of secretion and other cellular characteristics, including endocytosis activity, viability and expression of cell-surface markers, from tens of thousands of single immune cells. Single cells are compartmentalized in 50-pL droplets and analyzed using fluorescence microscopy combined with an immunoassay based on fluorescence relocation to paramagnetic nanoparticles aligned to form beadlines in a magnetic field. The protocol typically takes 8–10 h after preparation of microfluidic chips and chambers, which can be done in advance. By contrast, enzyme-linked immunospot (ELISPOT), flow cytometry, time-of-flight mass cytometry (CyTOF), and single-cell sequencing enable only end-point measurements and do not enable direct, quantitative measurement of secreted proteins. We illustrate how this system can be used to profile downregulation of tumor necrosis factor-α (TNF-α) secretion by single monocytes in septic shock patients, to study immune responses by measuring rates of cytokine secretion from single T cells, and to measure affinity of antibodies secreted by single B cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Single-cell secretion assay in microfluidic droplets.
Fig. 2: Fabrication of the microfluidic glass chamber using double-sided adhesive tape.
Fig. 3: Characterization of functionalized nanoparticles in droplets.
Fig. 4: Analysis pipeline.
Fig. 5: Analysis of cytokine secretion from human single T cells.
Fig. 6: Analysis of TNF-α secretion from human single monocytes of a healthy donor and a septic shock patient.

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are not publicly available due to confidentiality and contractual obligations toward industrial partners of the project in which the data were generated but are available from the corresponding author upon reasonable request.

Code availability

The DropMap MATLAB script is available from the GitHub repository, https://github.com/LCMD-ESPCI/dropmap-analyzer. MATLAB scripts illustrating the main functions performed by the DropCell.exe MATLAB application are available from GitHub repository https://github.com/bioaster/dropcell.git. The installation file for the DropCell.exe MATLAB application, as well as an image dataset that supports/illustrates the findings of this study, are available in the figshare repository, with the identifiers https://figshare.com/articles/DropCell_exe_installer/11336663/1 and https://figshare.com/articles/dropcell_image_data_set/11342426/1, respectively.

Change history

References

  1. Lawson, D. A., Kessenbrock, K., Davis, R. T., Pervolarakis, N. & Werb, Z. Tumour heterogeneity and metastasis at single-cell resolution. Nat. Cell Biol. 20, 1349–1360 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Potter, S. S. Single-cell RNA sequencing for the study of development, physiology and disease. Nat. Rev. Nephrol. 14, 479–492 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stuart, T. & Satija, R. Integrative single-cell analysis. Nat. Rev. Genet. 20, 257–272 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Svensson, V., Vento-Tormo, R. & Teichmann, S. A. Exponential scaling of single-cell RNA-seq in the past decade. Nat. Protoc. 13, 599–604 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Zhang, X. et al. Comparative analysis of droplet-based ultra-high-throughput single-cell RNA-Seq systems. Mol. Cell 73, 130–142.e5 (2018).

    Article  PubMed  Google Scholar 

  6. Battle, A. et al. Genomic variation. Impact of regulatory variation from RNA to protein. Science 347, 664–667 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Peterson, V. M. et al. Multiplexed quantification of proteins and transcripts in single cells. Nat. Biotechnol. 35, 936–939 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Shapiro, H. M. Practical Flow Cytometry (Wiley-Liss, 2003).

  9. Bendall, S. C. et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 687–696 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Becattini, S. et al. Functional heterogeneity of human memory CD4(+) T cell clones primed by pathogens or vaccines. Science 347, 400–406 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Betts, M. R. et al. Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J. Immunol. Methods 281, 65–78 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Han, G., Spitzer, M. H., Bendall, S. C., Fantl, W. J. & Nolan, G. P. Metal-isotope-tagged monoclonal antibodies for high-dimensional mass cytometry. Nat. Protoc. 13, 2121–2148 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Korin, B., Dubovik, T. & Rolls, A. Mass cytometry analysis of immune cells in the brain. Nat. Protoc. 13, 377–391 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shahi, P., Kim, S. C., Haliburton, J. R., Gartner, Z. J. & Abate, A. R. Abseq: ultrahigh-throughput single cell protein profiling with droplet microfluidic barcoding. Sci. Rep. 7, 44447 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Czerkinsky, C. C., Nilsson, L. A., Nygren, H., Ouchterlony, O. & Tarkowski, A. A solid-phase enzyme-linked immunospot (ELISPOT) assay for enumeration of specific antibody-secreting cells. J. Immunol. Methods 65, 109–121 (1983).

    Article  CAS  PubMed  Google Scholar 

  17. Kouwenhoven, M. et al. Enzyme-linked immunospot assays provide a sensitive tool for detection of cytokine secretion by monocytes. Clin. Diagn. Lab. Immunol. 8, 1248–1257 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schultes, B. C. & Whiteside, T. L. Monitoring of immune responses to CA125 with an IFN-gamma ELISPOT assay. J. Immunol. Methods 279, 1–15 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Mogensen, T. H. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin. Microbiol. Rev. 22, 240–273 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Garcia-Cordero, J. L., Nembrini, C., Stano, A., Hubbell, J. A. & Maerkl, S. J. A high-throughput nanoimmunoassay chip applied to large-scale vaccine adjuvant screening. Integr. Biol. (Camb.) 5, 650–658 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Han, Q. et al. Polyfunctional responses by human T cells result from sequential release of cytokines. Proc. Natl Acad. Sci. USA 109, 1607–1612 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Han, Q., Bradshaw, E. M., Nilsson, B., Hafler, D. A. & Love, J. C. Multidimensional analysis of the frequencies and rates of cytokine secretion from single cells by quantitative microengraving. Lab Chip 10, 1391–1400 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shirasaki, Y. et al. Real-time single-cell imaging of protein secretion. Sci. Rep. 4, 4736 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Son, K. J. et al. Microfluidic compartments with sensing microbeads for dynamic monitoring of cytokine and exosome release from single cells. Analyst 141, 679–688 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Varadarajan, N. et al. A high-throughput single-cell analysis of human CD8(+) T cell functions reveals discordance for cytokine secretion and cytolysis. J. Clin. Invest. 121, 4322–4331 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xue, Q. et al. Single-cell multiplexed cytokine profiling of CD19 CAR-T cells reveals a diverse landscape of polyfunctional antigen-specific response. J. ImmunoTher. Cancer 5, 85 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Xue, Q. et al. Analysis of single-cell cytokine secretion reveals a role for paracrine signaling in coordinating macrophage responses to TLR4 stimulation. Sci. Signal. 8, ra59 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yamanaka, Y. J. et al. Cellular barcodes for efficiently profiling single-cell secretory responses by microengraving. Anal. Chem. 84, 10531–10536 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Seah, Y. F. S., Hu, H. & Merten, C. A. Microfluidic single-cell technology in immunology and antibody screening. Mol. Asp. Med. 59, 47–61 (2018).

    Article  CAS  Google Scholar 

  30. Love, J., Ronan, J., Grotenbreg, G., Van Der Veen, A. & Ploegh, H. A microengraving method for rapid selection of single cells producing antigen-specific antibodies. Nat. Biotechnol. 24, 703–707 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Jin, A. et al. Rapid isolation of antigen-specific antibody-secreting cells using a chip-based immunospot array. Nat. Protoc. 6, 668–676 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Köster, S. et al. Drop-based microfluidic devices for encapsulation of single cells. Lab Chip 8, 1110–1115 (2008).

    Article  PubMed  Google Scholar 

  33. Clausell-Tormos, J. et al. Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms. Chem. Biol. 15, 427–437 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. El Debs, B., Utharala, R., Balyasnikova, I. V., Griffiths, A. D. & Merten, C. A. Functional single-cell hybridoma screening using droplet-based microfluidics. Proc. Natl Acad. Sci. 109, 11570–11575 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Mazutis, L. et al. Single-cell analysis and sorting using droplet-based microfluidics. Nat. Protoc. 8, 870–891 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shembekar, N., Hu, H., Eustace, D. & Merten, C. A. Single-cell droplet microfluidic screening for antibodies specifically binding to target cells. Cell Rep. 22, 2206–2215 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chokkalingam, V. et al. Probing cellular heterogeneity in cytokine-secreting immune cells using droplet-based microfluidics. Lab Chip 13, 4740–4744 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Eyer, K. et al. Single-cell deep phenotyping of IgG-secreting cells for high-resolution immune monitoring. Nat. Biotechnol. 35, 977–982 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Jorgolli, M. et al. Nanoscale integration of single cell biologics discovery processes using optofluidic manipulation and monitoring. Biotechnol. Bioeng. 116, 2393–2411 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mocciaro, A. et al. Light-activated cell identification and sorting (LACIS) for selection of edited clones on a nanofluidic device. Commun. Biol. 1, 41 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Winters, A. et al. Rapid single B cell antibody discovery using nanopens and structured light. mAbs 11, 1025–1035 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Konry, T., Dominguez-Villar, M., Baecher-Allan, C., Hafler, D. A. & Yarmush, M. L. Droplet-based microfluidic platforms for single T cell secretion analysis of IL-10 cytokine. Biosens. Bioelectron. 26, 2707–2710 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Qiu, L. et al. A membrane-anchored aptamer sensor for probing IFNγ secretion by single cells. Chem. Commun. (Camb.) 53, 8066–8069 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Segaliny, A. I. et al. Functional TCR T cell screening using single-cell droplet microfluidics. Lab Chip 18, 3733–3749 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gérard, A. et al. High-throughput single-cell activity-based screening and sequencing of antibodies using droplet microfluidics. Nat. Biotechnol. 38, 715–721 (2020).

    Article  PubMed  Google Scholar 

  46. Armbruster, D. A. & Pry, T. Limit of blank, limit of detection and limit of quantitation. Clin. Biochem. Rev. 29(Suppl 1), S49–S52 (2008).

    PubMed  PubMed Central  Google Scholar 

  47. Duffy, D. C., McDonald, J. C., Schueller, O. J. & Whitesides, G. M. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 70, 4974–4984 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Anna, S. L., Bontoux, N. & Stone, H. A. Formation of dispersions using “flow focusing” in microchannels. Appl. Phys. Lett. 82, 364–366 (2003).

    Article  CAS  Google Scholar 

  49. Akhtar, M., van den Driesche, S., Bödecker, A. & Vellekoop, M. J. Long-term storage of droplets on a chip by Parylene AF4 coating of channels. Sens. Actuators B Chem. 255, 3576–3584 (2018).

    Article  CAS  Google Scholar 

  50. Di Carlo, D., Aghdam, N. & Lee, L. P. Single-cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays. Anal. Chem. 78, 4925–4930 (2006).

    Article  PubMed  Google Scholar 

  51. Jin, S. H., Jeong, H. H., Lee, B., Lee, S. S. & Lee, C. S. A programmable microfluidic static droplet array for droplet generation, transportation, fusion, storage, and retrieval. Lab Chip 15, 3677–3686 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Liu, C., Liu, J., Gao, D., Ding, M. & Lin, J. M. Fabrication of microwell arrays based on two-dimensional ordered polystyrene microspheres for high-throughput single-cell analysis. Anal. Chem. 82, 9418–9424 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Ochsner, M. et al. Micro-well arrays for 3D shape control and high resolution analysis of single cells. Lab Chip 7, 1074–1077 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Schmitz, C. H., Rowat, A. C., Koster, S. & Weitz, D. A. Dropspots: a picoliter array in a microfluidic device. Lab Chip 9, 44–49 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Duval, F., van Beek, T. A. & Zuilhof, H. Key steps towards the oriented immobilization of antibodies using boronic acids. Analyst 140, 6467–6472 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Kumar, S., Aaron, J. & Sokolov, K. Directional conjugation of antibodies to nanoparticles for synthesis of multiplexed optical contrast agents with both delivery and targeting moieties. Nat. Protoc. 3, 314–320 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Saha, B., Evers, T. H. & Prins, M. W. How antibody surface coverage on nanoparticles determines the activity and kinetics of antigen capturing for biosensing. Anal. Chem. 86, 8158–8166 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Saha, B., Songe, P., Evers, T. H. & Prins, M. W. J. The influence of covalent immobilization conditions on antibody accessibility on nanoparticles. Analyst 142, 4247–4256 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Sivaram, A. J., Wardiana, A., Howard, C. B., Mahler, S. M. & Thurecht, K. J. Recent Advances in the generation of antibody-nanomaterial conjugates. Adv. Healthc. Mater. 7, 1700607 (2018).

    Article  Google Scholar 

  60. Welch, N. G., Scoble, J. A., Muir, B. W. & Pigram, P. J. Orientation and characterization of immobilized antibodies for improved immunoassays (review). Biointerphases 12, 02d301 (2017).

    Article  PubMed  Google Scholar 

  61. Dhadge, V. L., Hussain, A., Azevedo, A. M., Aires-Barros, R. & Roque, A. C. Boronic acid-modified magnetic materials for antibody purification. J. R. Soc. Interface 11, 20130875 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Lin, P. C. et al. Fabrication of oriented antibody-conjugated magnetic nanoprobes and their immunoaffinity application. Anal. Chem. 81, 8774–8782 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Wang, X., Xia, N. & Liu, L. Boronic acid-based approach for separation and immobilization of glycoproteins and its application in sensing. Int. J. Mol. Sci. 14, 20890–20912 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wagner, O. et al. Biocompatible fluorinated polyglycerols for droplet microfluidics as an alternative to PEG-based copolymer surfactants. Lab Chip 16, 65–69 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Williamson, J. D. & Cox, P. Use of a new buffer in the culture of animal cells. J. Gen. Virol. 2, 309–312 (1968).

    Article  CAS  PubMed  Google Scholar 

  66. Lowe, K. C. Perfluorochemical respiratory gas carriers: benefits to cell culture systems. J. Fluor. Chem. 118, 19–26 (2002).

    Article  CAS  Google Scholar 

  67. Holtze, C. et al. Biocompatible surfactants for water-in-fluorocarbon emulsions. Lab Chip 8, 1632–1639 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Mazutis, L. & Griffiths, A. D. Selective droplet coalescence using microfluidic systems. Lab Chip 12, 1800–1806 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Scott, R. L. The solubility of fluorocarbons. J. Am. Chem. Soc. 70, 4090–4093 (1948).

    Article  CAS  PubMed  Google Scholar 

  70. Simons, J. H. & Linevsky, M. J. The solubility of organic solids in fluorocarbon derivatives. J. Am. Chem. Soc. 74, 4750–4751 (1952).

    Article  CAS  Google Scholar 

  71. Qin, D., Xia, Y. & Whitesides, G. M. Soft lithography for micro- and nanoscale patterning. Nat. Protoc. 5, 491–502 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Eyer, K. et al. The quantitative assessment of the secreted IgG repertoire after recall to evaluate the quality of immunizations. J. Immunol. https://doi.org/10.4049/jimmunol.2000112 (2020).

  73. Raphael, I., Nalawade, S., Eagar, T. N. & Forsthuber, T. G. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine 74, 5–17 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Tanaka, A. & Sakaguchi, S. Regulatory T cells in cancer immunotherapy. Cell. Res. 27, 109–118 (2017).

    Article  CAS  PubMed  Google Scholar 

  75. Kang, S., Brown, H. M. & Hwang, S. Direct antiviral mechanisms of interferon-gamma. Immune Netw. 18, e33 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A. & Coffman, R. L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136, 2348–2357 (1986).

    Article  CAS  PubMed  Google Scholar 

  77. Wheelock, E. F. Interferon-like virus-inhibitor induced in human leukocytes by phytohemagglutinin. Science 149, 310–311 (1965).

    Article  CAS  PubMed  Google Scholar 

  78. DuPage, M. & Bluestone, J. A. Harnessing the plasticity of CD4(+) T cells to treat immune-mediated disease. Nat. Rev. Immunol. 16, 149–163 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Cecconi, M., Evans, L., Levy, M. & Rhodes, A. Sepsis and septic shock. Lancet 392, 75–87 (2018).

    Article  PubMed  Google Scholar 

  80. Gyawali, B., Ramakrishna, K. & Dhamoon, A. S. Sepsis: the evolution in definition, pathophysiology, and management. SAGE Open Med. 7, 2050312119835043 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Monneret, G. et al. Novel approach in monocyte intracellular TNF measurement: application to sepsis-induced immune alterations. Shock 47, 318–322 (2017).

    Article  CAS  PubMed  Google Scholar 

  82. Shalova, I. N. et al. Human monocytes undergo functional re-programming during sepsis mediated by hypoxia-inducible factor-1alpha. Immunity 42, 484–498 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. Kumar, P., Pai, K., Pandey, H. P. & Sundar, S. Study on pinocytosis by monocytes from visceral leishmaniasis patients. Curr. Sci. 83, 631–633 (2002).

    Google Scholar 

  84. Luciani, N., Gazeau, F. & Wilhelm, C. Reactivity of the monocyte/macrophage system to superparamagnetic anionic nanoparticles. J. Mater. Chem. 19, 6373–6380 (2009).

    Article  CAS  Google Scholar 

  85. Robert, D. et al. Cell sorting by endocytotic capacity in a microfluidic magnetophoresis device. Lab Chip 11, 1902–1910 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the REALISM study group: HCL: A. Boibieux, J. Davidson, L. Fayolle-Pivot, J. Gatel, C. Genin, A. Gregoire, A. Lepape, A.-C. Lukaszewicz, G. Marcotte, Marie Matray, D. Maucort-Boulch, N. Panel, T. Rimmele, H. Vallin; bioMérieux: S. Blein, K. Brengel-Pesce, E. Cerrato, V. Cheynet, E. Gallet-Gorius, A. Guichard, C. Jourdan, N. Koenig, F. Mallet, B. Meunier, M. Mommert, G. Oriol, C. Schrevel, O. Tabone, J. Yugueros Marcos; Bioaster: J. Becker, F. Bequet, F. Brajon, B. Canard, M. Collus, N. Garcon, I. Gorse, F. Lavocat, K. Louis, J. Moriniere, Y. Mouscaz, L. Noailles, M. Perret, F. Reynier, C. Riffaud, M.-L. Rol, N. Sapay; Sanofi: C. Carre, A. de Monfort, K. Florin, L. Fraisse, I. Fugier, M. L’Azou, S. Payrard, A. Peleraux, L. Quemeneur; ESPCI: S. Toetsch; GSK: T. Ashton, P.J. Gough, S.B. Berger, D. Gardiner, A. MacNamara, A. Raychaudhuri, R. Smylie, L. Tan, C. Tipple. This research project received funding from the French Government through the “Investissement d’Avenir” program (grant no. ANR-10-AIRT-03) and from bioMérieux. K.E. acknowledges generous funding from the ‘The Branco Weiss Fellowship – Society in Science’ and received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 80336). This work also received support from “Institut Pierre-Gilles de Gennes” (laboratoire d’excellence, “Investissements d’Avenir” programs ANR-10-IDEX-0001-02 PSL, ANR-10- EQPX-34 and ANR-10-LABX-31). This work was also supported by BPIFrance under the framework “Programme d’Investissements d’Avenir” (CELLIGO Project). The authors thank the healthy donors and the septic patients who volunteered to donate peripheral blood for these experiments. We also thank M.-N. Unheheuer, H. Laude and B.L. Perlaza for access to the BioResources platform (ICAReB). We thank F. Pène, who collected clinical samples from septic shock patients at the medical intensive care unit of Cochin Hospital (CPP17-053a / 2017-A01134-49). We thank F. Porcheray for critical reading of the manuscript. We further acknowledge the help of P. Canales Herrerias and P. Bruhns for their helpful discussion and supervision of the immunization of mice.

Author information

Authors and Affiliations

Authors

Contributions

Y.B., K.E., M.R. and N.A. performed and optimized the experiments described in this protocol, S.D. and G.C. provided the respective MATLAB scripts for data analysis; C.C and T.T. provided the statistical tools. M.M. optimized the boronic acid nanobead functionalization protocol. C.V. and J. Baudry managed the optical bench setup. J.-F.L. supplied the septic clinical samples. K.E., J. Bibette, J. Baudry and A.D.G. developed the DropMap technology38 and contributed to the early-stage definition of the new technology. Y.B. and C.V. extended the DropMap technology to measure low cytokine secretion profiles and to overcome limitations of cell endocytic activity. G.M., A.P. and J.T. designed and set up the clinical study involving sepsis and matched-control patients. A.T., C.G., P.L., V.M., F.V., P.C. and I.A.G. supervised the work, participated to the design of technical experiments and of the clinical study, and actively contributed in writing different sections of the manuscript. Y.B., S.D. and C.V. analyzed the data for the sepsis application, and Y.B., K.E., J. Baudry, A.D.G. and C.V. wrote the manuscript. All authors edited and proofread the paper.

Corresponding authors

Correspondence to Jean Baudry, Andrew D. Griffiths or Christophe Védrine.

Ethics declarations

Competing interests

Some of the authors (J. Baudry, J. Bibette, A.D.G., Y.B. & C.V.) are inventors on patent applications based on certain ideas described in this paper and may receive financial compensation via their employers’ rewards-to-inventors schemes.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Eyer, K., et al. Nat. Biotechnol. 35, 977–982 (2017): https://www.nature.com/articles/nbt.3964

Rybczynska, M., et al. 38, 5337–5342 (2020): https://doi.org/10.1016/j.vaccine.2020.05.066

Supplementary information

Supplementary Information

Supplementary Figs. 1–3 and Supplementary Method 1 (Pipeline analysis of droplet detection and tracking).

Reporting Summary

Supplementary Data 1

Complete chip design (CAD file).

Supplementary Data 2

Mask for the double-sided tape to prepare the observation chamber.

Supplementary Data 3

Mask for laser ablation.

Supplementary Data 4

Mask for the magnet holder.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bounab, Y., Eyer, K., Dixneuf, S. et al. Dynamic single-cell phenotyping of immune cells using the microfluidic platform DropMap. Nat Protoc 15, 2920–2955 (2020). https://doi.org/10.1038/s41596-020-0354-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-020-0354-0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research