Skip to main content
Log in

An accurate and robust adaptive notch filter-based phase-locked loop

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

The use of an adaptive notch filter (ANF) is one of the most popular methods to block harmonics in a phase-locked loop (PLL). Existing ANFs suffer from drawbacks such as a low harmonic rejection capability, complex structure or instability. To improve the performance of ANF-based PLLs, an enhanced ANF (EANF) is proposed in this paper. Its structure, filtering characteristics and frequency-adaptive method are analyzed. Multiple EANFs can be easily cascaded and achieve adaptation through a common frequency feedback loop (FFL). A small signal model is provided, and its control parameters are tuned through the symmetrical optimum method. The harmonic rejection capability and stability of the proposed method are confirmed through simulation and experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Golestan, S., Guerrero, J.M., Vasquez, J.C.: Three-phase PLLs: a review of recent advances. IEEE Trans Power Electron 32(3), 1894–1907 (2017)

    Article  Google Scholar 

  2. Li, K., Bo, A., Zheng, H., Sun, N.: Performance analysis of three-phase phase-locked loops for distorted and unbalanced grids. J Power Electron 17(1), 262–271 (2017)

    Article  Google Scholar 

  3. Du, L.W., Li, M.X., Tang, Z., Xiong, L.S., Ma, X., Tang, G.X.: A fast positive sequence components extraction method with noise immunity in unbalanced grids. IEEE Trans Power Electron 35(7), 6682–6685 (2019)

    Article  Google Scholar 

  4. Dai, Z.Y., Fan, M.D., Nie, H.X., Zhang, J.X., Li, J.W.: A Robust Frequency estimation method for aircraft grids under distorted conditions. IEEE Trans Ind Electron 67(5), 4254–4258 (2020)

    Article  Google Scholar 

  5. Wang, Y.F., Li, Y.W.: Grid synchronization pll based on cascaded delayed signal cancellation. IEEE Trans Power Electron 26(7), 1987–1997 (2011)

    Article  Google Scholar 

  6. Seong, U.S., Hwang, S.H.: Analysis of phase error effects due to grid frequency variation of PLL based on APF. J Power Electron 16(1), 18–26 (2016)

    Article  Google Scholar 

  7. Golestan, S., Monfared, M., Freijedo, F.D., Guerrero, J.M.: Dynamics assessment of advanced single-phase PLL structures. IEEE Trans Ind Electron 60(6), 2167–2177 (2013)

    Article  Google Scholar 

  8. Yang, L.Y., Wang, C.L., Liu, J.H., Jia, C.X.: A novel phase locked loop for grid-connected converters under non-ideal grid conditions. J Power Electron 15(1), 216–226 (2015)

    Article  Google Scholar 

  9. Ramezani, M., Golestan, S., Li, S., Guerrero, J.M.: A simple approach to enhance the performace of complex -coefficient filter-based PLL in grid-connected applications. IEEE Trans Ind Electron 65(6), 5081–5085 (2018)

    Article  Google Scholar 

  10. Golestan, S., Guerrero, J.M., Vasquez, J.C.: An open-loop grid synchronization approach for single-phase applications. IEEE Trans Power Electron 33(7), 5548–5555 (2018)

    Article  Google Scholar 

  11. Golestan, S., Guerrero, J.M., Abusorrah, A.M.: MAF-PLL with phase-lead compensator. IEEE Trans Ind Electron 62(6), 3691–3695 (2015)

    Google Scholar 

  12. Karimi-Ghartemani, M.: Enhanced Phase-Locked Loop Structures for Power and Energy Applications. Wiley, Hoboken, NJ, USA (2014)

    Book  Google Scholar 

  13. Golestan, S., Guerrero, J.M., Vasquez, J.C.: Steady-state linear Kalman filter-based PLLs for power applications: a second look. IEEE Trans Ind Electron 65(12), 9795–9800 (2018)

    Article  Google Scholar 

  14. Lee, J.P., Min, B.D., Kim, T.J., Yoo, D.W., Yoo, J.Y.: Active frequency with a positive feedback anti- islanding method based on a Robust PLL algorithm for grid-connected PV PCS. J Power Electron 11(3), 1904–1917 (2011)

    Google Scholar 

  15. Golestan, S., Mousazadeh, S.Y., Guerrero, J.M., Vasquez, J.C.: ‘A critical examination of frequency-fixed second-order generalized integrator based phase-locked loops’. IEEE Trans Power Electron 32(9), 6666–6672 (2017)

    Article  Google Scholar 

  16. Ciobotaru, M., Teodorescu, R., Blaabjerg, F.: A new single-phase PLL structure based on second order generalized integrator in Proc. 37th IEEE power electron. Spec Conf 1, 1511–1516 (2006)

    Google Scholar 

  17. Carugati, I., Maestri, S., Donato, P.G., Carrica, D., Benedetti, M.: Variable sampling period filter PLL for distorted three-phase systems. IEEE Trans Power Electron 27(1), 321–330 (2012)

    Article  Google Scholar 

  18. Rodriguez, P., Luna, A., Candela, I., Mujal, R., Teodorescu, R., Blaabjerg, F.: Multiresonant frequency- locked loop for grid synchronization of power converters under distorted grid conditions. IEEE Trans Ind Electron 58(1), 127–138 (2011)

    Article  Google Scholar 

  19. Gonzalez-Espin, F., Figueres, E., Garcera, G.: An adaptive synchronous-reference-frame phase-locked loop for power quality improvement in a polluted utility grid. IEEE Trans Ind Electron 59(6), 2718–2731 (2012)

    Article  Google Scholar 

  20. Gonzalez-Espin, F., Garcera, G., Patrao, I., Figueres, E.: An adaptive control system for three-phase photovoltaic inverters working in a polluted and variable frequency electric grid. IEEE Trans Power Electron 27(10), 4248–4261 (2012)

    Article  Google Scholar 

  21. Nuss, U.: “Blindleistungskompensation mit selbstgeführten stromrichter und kapazitivem energiespeicher,” Ph.D. dissertation. Karlsruhe Institute of Technology, Germany (1989)

    Google Scholar 

  22. Xin, Z., Wang, X., Qin, Z., Lu, M., Loh, P.C., Blaabjerg, F.: An improved second-order generalized integrator based quadrature signal generator. IEEE Trans Power Electron 31(12), 8068–8073 (2016)

    Article  Google Scholar 

  23. Matas, J., Castilla, M., Miret, J., de Vicuna, L.G., Guzman, R.: An adaptive prefiltering method to improve the speed/accuracy tradeoff of voltage sequence detection methods under adverse grid conditions. IEEE Trans Ind Electron 61(5), 2139–2151 (2014)

    Article  Google Scholar 

  24. Wang, Y.F., Li, Y.: Analysis and digital implementation of cascaded delayed signal cancellation PLL. IEEE Trans Power Electron 26(4), 1067–1080 (2011)

    Article  Google Scholar 

  25. Hamed, H.A., Abdou, A.F., Bayoumi, E.H.E., EL-Kholy, E.E.: frequency adaptive CDSC-PLL using axis drift control under adverse grid condition. IEEE Trans Ind Electron 64(4), 2671–2682 (2017)

    Article  Google Scholar 

  26. Golestan, S., Freijedo, F.D., Vidal, A., Yepes, A.G., Guerrero, J.M., Doval-Gandoy, J.: An efficient implementation of generalized delayed signal cancellation PLL. IEEE Trans Power Electron 31(2), 1085–1094 (2016)

    Article  Google Scholar 

  27. Golestan, S., Ramezani, M., Guerrero, J.M., Freijedo, F.D., Monfared, M.: “Moving average filter based phase-locked loops: performance analysis and design guidelines”. IEEE Trans Power Electron 29(6), 2750–2763 (2014)

    Article  Google Scholar 

  28. Han, Y., Luo, M., Chen, C., Jiang, A., Zhao, X., Guerrero, J.M.: Performance evaluations of Four MAF-based PLL algorithms for grid-synchronization of three-phase grid-connected PWM inverters and DGs. J. Power Electron 16(5), 1904–1917 (2016)

    Article  Google Scholar 

  29. Li, Y., Wang, D., Han, W., Sun, Z., Yuan, T.: A hybrid filtering Stage based Quasi-type-1 PLL under distorted grid conditions. J Power Electron 17(3), 704–715 (2017)

    Article  Google Scholar 

  30. Golestan, S., Guerrero, J.M., Gharehpetian, G.: Five approaches to deal with problem of DC offset in phase-locked loop algorithms: design considerations and performance evaluations. IEEE Trans Power Electron 31(1), 648–660 (2016)

    Article  Google Scholar 

  31. Golestan, S., Guerrero, J.M., Vasquez, J.C., Abusorrah, A.M., Al-Turki, D.Y.: Modeling, tuning, and performance comparison of second order generalized- integrator-based FLLs. IEEE Trans Power Electron 33(12), 229–239 (2018)

    Article  Google Scholar 

  32. Wang, J.Y., Liang, J., Gao, F., Zhang, L., Wang, Z.D.: “A method to improve the dynamic performance of moving average filter-based PLL”. IEEE Trans Power Electron. 30(10), 5978–5990 (2015)

    Article  Google Scholar 

  33. Mao, P., Zhang, M., Zhang, W.: A canonical small-signal linearized model and a performance evaluation of the PLL in three phase grid inverter system. J. Power Electron 14(5), 1057–1068 (2014)

    Article  Google Scholar 

  34. Li, X.L., Park, J.G., Shin, H.B.: Comparison and evaluation of anti-Windup PI controllers. J Power Electron 11(1), 45–50 (2011)

    Article  Google Scholar 

  35. Park, J.G., Chung, J.H., Shin, H.B.: Anti-windup integralproportional controller for variable-speed motor drives. J Power Electronics 2(2), 130–138 (2002)

    Google Scholar 

  36. Seok, J.K.: Frequency-spectrum-based Antiwindup compensator for PI-controlled systems. IEEE Trans. Ind. Electron. 53(6), 1781–1790 (2006)

    Article  Google Scholar 

  37. Zhang, D., Li, H., Collins, E.G.: Digital anti-Windup PI controllers for variable-speed motor drives using FPGA and stochastic theory. IEEE Trans Power Electron 21(5), 1496–1501 (2006)

    Article  Google Scholar 

  38. Shu, K., Sanchez-Sinencio, E.: CMOS PLL Synthesizers-Analysis and Design. Springer-Verlag, New York, NY, USA (2005)

    Google Scholar 

  39. McGranaghan, M., Beaulieu, G.: “Update on: Harmonic emission limits for customers connected to MV, HV and EHV,” in Proc. IEEE Transmiss Distrib Con Exhibit 1, 1158–1161 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 61673210, and in part by the Jiangsu Qing Lan Project and the Jiangsu Province University Outstanding Science and Technology Innovation Team Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinbo Li.

Appendix

Appendix

See (Fig. 

Fig. 21
figure 21

Derivation process of an EANF, The derivation process of the EANF is shown in Fig. 21a through Fig. 21f. This process consists of six steps.

21).

The transfer functions corresponding to Fig. 21a through Fig. 21f can be obtained as follows:

$$G_{a} (s) = \frac{\omega }{s}$$
(17)
$$G_{b} (s) = \frac{{{\kern 1pt} {\kern 1pt} G_{a} (s)}}{{{\kern 1pt} 1 + {\kern 1pt} G_{a} (s){\kern 1pt} {\kern 1pt} G_{a} (s)}} = \frac{s\omega }{{s^{2} + \omega^{2} }}$$
(18)
$$G_{c} (s) = {\kern 1pt} {\kern 1pt} \zeta G_{b} (s) = \frac{\zeta \omega s}{{s^{2} + \omega^{2} }}$$
(19)
$$G_{d} (s) = \frac{{{\kern 1pt} {\kern 1pt} G_{c} (s)}}{{{\kern 1pt} 1 + {\kern 1pt} {\kern 1pt} G_{c} (s)}} = \frac{\zeta \omega s}{{s^{2} + \zeta \omega s + \omega^{2} }}$$
(20)
$${\kern 1pt} G_{e} (s) = 1 - {\kern 1pt} {\kern 1pt} G_{d} (s) = \frac{{s^{2} + \omega^{2} }}{{s^{2} + \zeta \omega s + \omega^{2} }}$$
(21)
$$G_{{EANF_{n} }} (s) = G_{f} (s) = \frac{{s^{2} + (n\omega )^{2} }}{{s^{2} + \zeta n\omega s + (n\omega )^{2} }}(f)$$
(22)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wang, Q., Xiao, L. et al. An accurate and robust adaptive notch filter-based phase-locked loop. J. Power Electron. 20, 1514–1525 (2020). https://doi.org/10.1007/s43236-020-00127-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43236-020-00127-2

Keywords

Navigation