Skip to main content
Log in

An innovative method for calibrating local cooling rate in electroslag remelting of M42 high-speed steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The determination of the local cooling rate has a great significance in optimizing the parameters of electroslag remelting (ESR) and improving the quality of the ingots. An innovative method was proposed for calibrating the local cooling rate of M42 high-speed steel (HSS) in the ESR process. After resolidification at different cooling rates under high-temperature laser confocal microscopy, the carbide network spacing of the specimen was observed using a scanning electron microscope. A functional relationship between the cooling rate and average carbide network spacing was established. The average local cooling rate of the solidification process of the M42 HSS ingot was calibrated. The results show that the higher the cooling rate, the smaller the network spacing of the carbides. For the steel ingot with a diameter of 360 mm, the average local cooling rate was 0.562 °C/s at the surface, 0.057 °C/s at the position of 0.25D (where D is the diameter of the ingot), and 0.046 °C/s at the center of the ingot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W.J. Tong, W.M. Li, X.M. Zang, P. Wang, H.B. Li, D.J. Li, J. Iron Steel Res. Int. (2020). https://doi.org/10.1007/s42243-020-00426-9.

    Article  Google Scholar 

  2. S.J. Li, G.G. Cheng, Y. Huang, W.X. Dai, Z.Q. Miao, J. Iron Steel Res. Int. 27 (2020) 380–391.

    Article  Google Scholar 

  3. M. Ali, D. Porter, J. Kömi, M. Eissa, H. El Faramawy, T. Mattar, J. Iron Steel Res. Int. 26 (2019) 1350–1365.

    Article  Google Scholar 

  4. J.H. Cao, Z.B. Hou, D.W. Guo, Y. Chang, G.H. Wen, P. Tang, J. Iron Steel Res. 31 (2019) 286–295.

    Google Scholar 

  5. D. Hou, Z.H. Jiang, T.P. Qu, D.Y. Wang, F.B. Liu, H.B. Li, J. Iron Steel Res. Int. 26 (2019) 20–31.

    Article  Google Scholar 

  6. Z.B. Xie, Q.L. Shao, G.P. Zhang, Z.L. Wang, N. He, R. Wang, Special Steel 40 (2019) No. 1, 47–51.

    Google Scholar 

  7. V.I. Chumanov, I.V. Chumanov, in: 2016 2nd International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), IEEE, South Ural State University, Chelyabinsk, Russia, 2016, pp. 1–4.

  8. D.P. Zhan, Y.P. Zhang, R.J. Liu, Z.H. Jiang, H.S. Zhang, Ironmak. Steelmak. 44 (2017) 368–376.

    Article  Google Scholar 

  9. L.Z. Wu, Hebei Metall. (2015) No. 11, 1–8.

  10. S.M. Chen, X.Y. Dong, Heat Treat. 30 (2015) No. 5, 37–40.

    Google Scholar 

  11. W.M. Li, Z.H. Jiang, X.M. Zang, X. Deng, Q.L. Shao, Z.B. Xie, J. Cent. South Univ. 48 (2017) 1697–1703.

    Google Scholar 

  12. X.F. Zhou, D. Liu, W.L. Zhu, F. Fang, Y.Y. Tu, J.Q. Jiang, J. Iron Steel Res. Int. 24 (2017) 43–49.

    Article  Google Scholar 

  13. H.F. Fischmeister, R. Riedl, S. Karagöz, Metall. Trans. A 20 (1989) 2133–2148.

    Article  Google Scholar 

  14. G. Du, J. Li, Z.B. Wang, Metall. Mater. Trans. B 48 (2017) 2873–2890.

    Article  Google Scholar 

  15. Y.W. Luo, H.J. Guo, X.L. Sun, Iron and Steel 52 (2017) No. 7, 68–75.

    Google Scholar 

  16. S.K. Choudhary, A. Ghosh, ISIJ Int. 49 (2009) 1819–1827.

    Article  Google Scholar 

  17. F. Hlawka, T. Marchione, O. Jacura, A. Cornet, Surf. Eng. 9 (1993) 300–304.

    Article  Google Scholar 

  18. L. Åhman, Metall. Trans. A 15 (1984) 1829–1835.

    Article  Google Scholar 

  19. Y.K. Luan, N.N Song, Y.L. Bai, X.H. Kang, D.Z. Li, J. Mater. Process. Technol. 210 (2010) 536–541.

    Article  Google Scholar 

  20. Z.G. Zhao, S.T. Qiu, R. Zhu, Chinese J. Eng. 38 (2016) 787–794.

    Google Scholar 

  21. M. Boccalini, H. Goldenstein, Int. Mater. Rev. 46 (2001) 92–115.

    Article  Google Scholar 

  22. M. Boccalini, Solidification of high speed steels, São Paulo, Brazil, 1996.

  23. G.X. Hu, X. Cai, Y.H. Rong, Fundamentals of materials science, Shanghai Jiao Tong University Press, Shanghai, China, 2010.

    Google Scholar 

  24. H.Z. Fu, J.J. Guo, L. Liu, J.S. Li, Directional solidification and processing of advanced materials, China Science Publishing & Media Co., Ltd., Beijing, China, 2008.

    Google Scholar 

  25. Z.Y. Zhang, Z.D. Li, Q.L. Yong, X.J. Sun, Z.Q. Wang, G.D. Wang, Acta Metall. Sin. 51 (2015) 315–324.

    Google Scholar 

  26. P.A. Zhang, Y.P. Ma, S.K. Hou, L. Yang, Y.Z. Feng, Heat Treat. Met. 43 (2018) No. 9, 148–151.

    Google Scholar 

  27. M.T. Mao, H.J. Guo, F. Wang, X.L. Sun, ISIJ Int. 59 (2019) 848–857.

    Article  Google Scholar 

  28. K. Yamamoto, S. Inthidech, N. Sasaguri, Y. Matsubara, Mater. Trans. 55 (2014) 684–689.

    Article  Google Scholar 

  29. Y. Liu, J. Li, C.B. Shi, T.Y. Wang, X.T. Lu, Q.L. Li, J. Mater. Metall. 16 (2017) 90–97.

    Google Scholar 

  30. Q.T. Zhu, J. Li, C.B. Shi, W.T. Yu, Int. J. Miner. Metall. Mater. 22 (2015) 1149–1156.

    Article  Google Scholar 

  31. Q.T. Zhu, J. Li, J. Zhang, C.B. Shi, J.H. Li, J. Huang, Metall. Mater. Trans. B 50 (2019) 1365–1377.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully express their appreciation to the National Natural Science Foundation of China (Nos. 51974153, U1960203, and 51974156), the Joint Fund of State Key Laboratory of Marine Engineering and University of Science and Technology Liaoning (SKLMEA-USTL-201901, SKLMEA-USTL-201707), and China Scholarship Council (201908210457).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wan-ming Li or Xi-min Zang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Wm., Jiao, Sc., Tong, Wj. et al. An innovative method for calibrating local cooling rate in electroslag remelting of M42 high-speed steel. J. Iron Steel Res. Int. 28, 990–996 (2021). https://doi.org/10.1007/s42243-020-00471-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00471-4

Keywords

Navigation