Skip to main content
Log in

The journey of multifunctional bone scaffolds fabricated from traditional toward modern techniques

  • Review
  • Published:
Bio-Design and Manufacturing Aims and scope Submit manuscript

Abstract

As a bone scaffold, meeting all basic requirements besides dealing with other bone-related issues—bone cancer and accelerated regeneration—is not expected from traditional scaffolds, but a newer class of scaffolds called multifunctional. From a clinical point of view, being a multifunctional scaffold means reducing in healing time, direct costs—medicine, surgery, and hospitalization—and indirect costs—loss of mobility, losing job, and pain. The main aim of the present review is following the multifunctional bone scaffolds trend to deal with both bone regeneration and cancer therapy. Special consideration is given to different fabrication techniques which have been applied to yield these materials spanning from traditional to modern ones. Moreover, the hierarchical structure of bone plus bone cancers and available medicines to them are introduced to familiarize the potential reader of review with the pluri-disciplinary essence of the field. Eventually, a brief discussion relating to the future trend of these materials is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Pérez-Amodio S, Engel E (2014) Bone biology and regeneration. Bio-Ceram Clin Appl. https://doi.org/10.1002/9781118406748.ch11

    Article  Google Scholar 

  2. Reznikov N, Shahar R, Weiner S (2014) Bone hierarchical structure in three dimensions. Acta Biomater 10:3815–3826. https://doi.org/10.1016/j.actbio.2014.05.024

    Article  Google Scholar 

  3. Lohkamp M, Kromer TO, Schmitt H (2017) Osteoarthritis and joint replacements of the lower limb and spine in ex-professional soccer players: a systematic review. Scand J Med Sci Sports 27:1038–1049. https://doi.org/10.1111/sms.12846

    Article  Google Scholar 

  4. Salmon JH, Rat AC, Sellam J, Michel M, Eschard JP, Guillemin F, Jolly D, Fautrel B (2016) Economic impact of lower-limb osteoarthritis worldwide: a systematic review of cost-of-illness studies. Osteoarthr Cartil 24:1500–1508. https://doi.org/10.1016/j.joca.2016.03.012

    Article  Google Scholar 

  5. Pawelec KM (2019) Introduction to the challenges of bone repair. In: Pawelec KM, Planell E (eds) Woodhead publishing series in biomaterials, 2nd edn. Woodhead Publishing, Sawston, pp 1–13. https://doi.org/10.1016/B978-0-08-102451-5.00001-9

    Chapter  Google Scholar 

  6. Fraumeni JF Jr (1967) Stature and malignant tumors of bone in childhood and adolescence. Cancer 20:967–973. https://doi.org/10.1002/1097-0142(196706)20:6%3c967:AID-CNCR2820200606%3e3.0.CO;2-P

    Article  Google Scholar 

  7. Purushotham S, Ramanujan RV (2010) Thermoresponsive magnetic composite nanomaterials for multimodal cancer therapy. Acta Biomater 6:502–510. https://doi.org/10.1016/j.actbio.2009.07.004

    Article  Google Scholar 

  8. Gupta R, Bajpai AK (2011) Magnetically guided release of ciprofloxacin from superparamagnetic polymer nanocomposites. J Biomater Sci Polym Ed 22:893–918. https://doi.org/10.1163/092050610X496387

    Article  Google Scholar 

  9. Xu R, Ma J, Sun X, Chen Z, Jiang X, Guo Z, Huang L, Li Y, Wang M, Wang C, Liu J, Fan X, Gu J, Chen X, Zhang Y, Gu N (2009) Ag nanoparticles sensitize IR-induced killing of cancer cells. Cell Res 19:1031–1034. https://doi.org/10.1038/cr.2009.89

    Article  Google Scholar 

  10. Gallego Ó, Puntes V (2006) What can nanotechnology do to fight cancer? Clin Transl Oncol 8:788–795. https://doi.org/10.1007/s12094-006-0133-6

    Article  Google Scholar 

  11. Vallet-Regí M, Ruiz-Hernández E (2011) Bioceramics: from bone regeneration to cancer nanomedicine. Adv Mater 23:5177–5218. https://doi.org/10.1002/adma.201101586

    Article  Google Scholar 

  12. Gu W, Wu C, Chen J, Xiao Y (2013) Nanotechnology in the targeted drug delivery for bone diseases and bone regeneration. Int J Nanomed 8:2305–2317. https://doi.org/10.2147/IJN.S44393

    Article  Google Scholar 

  13. Qu H, Fu H, Han Z, Sun Y (2019) Biomaterials for bone tissue engineering scaffolds: a review. RSC Adv 9:26252–26262. https://doi.org/10.1039/C9RA05214C

    Article  Google Scholar 

  14. Vallet-Regí M, Lozano D, González B, Izquierdo-Barba I (2020) Biomaterials against bone infection. Adv Healthc Mater. https://doi.org/10.1002/adhm.202000310

    Article  Google Scholar 

  15. Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomater Silver Jubil Compend. https://doi.org/10.1016/B978-008045154-1.50021-6

    Article  Google Scholar 

  16. Bigham A, Kermani S, Saudi A, Aghajanian A, Rafienia M (2020) On the bioactivity and mechanical properties of gehlenite nanobioceramic: a comparative study YR—2020/4/1. J Med Signals Sens 10:105–112. https://doi.org/10.4103/jmss.JMSS_41_19

    Article  Google Scholar 

  17. Rafienia M, Bigham A, Saudi A, Rahmati S (2018) Gehlenite nanobioceramic: sol–gel synthesis, characterization, and in vitro assessment of its bioactivity. Mater Lett. https://doi.org/10.1016/j.matlet.2018.04.094

    Article  Google Scholar 

  18. Bigham A, Hassanzadeh-Tabrizi SA, Rafienia M, Salehi H (2016) Ordered mesoporous magnesium silicate with uniform nanochannels as a drug delivery system: the effect of calcination temperature on drug delivery rate. Ceram Int. https://doi.org/10.1016/j.ceramint.2016.08.009

    Article  Google Scholar 

  19. Marques C, Ferreira JMF, Andronescu E, Ficai D, Sonmez M, Ficai A (2014) Multifunctional materials for bone cancer treatment. Int J Nanomed 9:2713–2725. https://doi.org/10.2147/IJN.S55943

    Article  Google Scholar 

  20. Bigham A, Aghajanian AH, Behzadzadeh S, Sokhani Z, Shojaei S, Kaviani Y, Hassanzadeh-Tabrizi SA (2019) Nanostructured magnetic Mg2SiO4–CoFe2O4 composite scaffold with multiple capabilities for bone tissue regeneration. Mater Sci Eng, C 99:83–95. https://doi.org/10.1016/j.msec.2019.01.096

    Article  Google Scholar 

  21. Lu Y, Li L, Zhu Y, Wang X, Li M, Lin Z, Hu X, Zhang Y, Yin Q, Xia H, Mao C (2018) Multifunctional copper-containing carboxymethyl chitosan/alginate scaffolds for eradicating clinical bacterial infection and promoting bone formation. ACS Appl Mater Interfaces 10:127–138. https://doi.org/10.1021/acsami.7b13750

    Article  Google Scholar 

  22. Zhang Q, Mochalin VN, Neitzel I, Hazeli K, Niu J, Kontsos A, Zhou JG, Lelkes PI, Gogotsi Y (2012) Mechanical properties and biomineralization of multifunctional nanodiamond-PLLA composites for bone tissue engineering. Biomaterials 33:5067–5075. https://doi.org/10.1016/j.biomaterials.2012.03.063

    Article  Google Scholar 

  23. Tamay DG, Dursun Usal T, Alagoz AS, Yucel D, Hasirci N, Hasirci V (2019) 3D and 4D printing of polymers for tissue engineering applications. Front Bioeng Biotechnol 7:164. https://doi.org/10.3389/fbioe.2019.00164

    Article  Google Scholar 

  24. Ma H, Feng C, Chang J, Wu C (2018) 3D-printed bioceramic scaffolds: from bone tissue engineering to tumor therapy. Acta Biomater 79:37–59. https://doi.org/10.1016/j.actbio.2018.08.026

    Article  Google Scholar 

  25. Fuchs RK, Thompson WR, Warden SJ (2019) Bone biology. In: Pawelec KM, Planell E (eds) Woodhead publishing series in biomaterials, 2nd edn. Woodhead Publishing, Sawston, pp 15–52

    Google Scholar 

  26. Wegst UGK, Bai H, Saiz E, Tomsia AP, Ritchie RO (2015) Bioinspired structural materials. Nat Mater 14:23–36. https://doi.org/10.1038/nmat4089

    Article  Google Scholar 

  27. Koester KJ, Ager JW, Ritchie RO (2008) The true toughness of human cortical bone measured with realistically short cracks. Nat Mater 7:672–677. https://doi.org/10.1038/nmat2221

    Article  Google Scholar 

  28. Rho J-Y, Kuhn-Spearing L, Zioupos P (1998) Mechanical properties and the hierarchical structure of bone. Med Eng Phys 20:92–102. https://doi.org/10.1016/S1350-4533(98)00007-1

    Article  Google Scholar 

  29. Eliaz N, Metoki N (2017) Calcium phosphate bioceramics: a review of their history, structure, properties, coating technologies and biomedical applications. Materials. https://doi.org/10.3390/ma10040334

    Article  Google Scholar 

  30. Dang W, Li T, Li B, Ma H, Zhai D, Wang X, Chang J, Xiao Y, Wang J, Wu C (2018) A bifunctional scaffold with CuFeSe2 nanocrystals for tumor therapy and bone reconstruction. Biomaterials 160:92–106. https://doi.org/10.1016/j.biomaterials.2017.11.020

    Article  Google Scholar 

  31. Samavedi S, Joy N (2017) 3D printing for the development of in vitro cancer models. Curr Opin Biomed Eng 2:35–42. https://doi.org/10.1016/j.cobme.2017.06.003

    Article  Google Scholar 

  32. Mouriño V, Boccaccini AR (2010) Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. J R Soc Interface 7:209–227. https://doi.org/10.1098/rsif.2009.0379

    Article  Google Scholar 

  33. Wadajkar AS, Bhavsar Z, Ko C-Y, Koppolu B, Cui W, Tang L, Nguyen KT (2012) Multifunctional particles for melanoma-targeted drug delivery. Acta Biomater 8:2996–3004. https://doi.org/10.1016/j.actbio.2012.04.042

    Article  Google Scholar 

  34. Ruel-Gariépy E, Shive M, Bichara A, Berrada M, Le Garrec D, Chenite A, Leroux J-C (2004) A thermosensitive chitosan-based hydrogel for the local delivery of paclitaxel. Eur J Pharm Biopharm 57:53–63. https://doi.org/10.1016/S0939-6411(03)00095-X

    Article  Google Scholar 

  35. Nagarajan S, Reddy BSR, Tsibouklis J (2011) In vitro effect on cancer cells: synthesis and preparation of polyurethane membranes for controlled delivery of curcumin. J Biomed Mater Res, Part A 99A:410–417. https://doi.org/10.1002/jbm.a.33203

    Article  Google Scholar 

  36. Fan H, Dash AK (2001) Effect of cross-linking on the in vitro release kinetics of doxorubicin from gelatin implants. Int J Pharm 213:103–116. https://doi.org/10.1016/S0378-5173(00)00651-7

    Article  Google Scholar 

  37. Andronescu E, Ficai A, Albu MG, Mitran V, Sonmez M, Ficai D, Ion R, Cimpean A (2013) Collagen-hydroxyapatite/cisplatin drug delivery systems for locoregional treatment of bone cancer. Technol Cancer Res Treat 12:275–284. https://doi.org/10.7785/tcrt.2012.500331

    Article  Google Scholar 

  38. Mann S, Khawar S, Moran C, Kalhor N (2019) Revisiting localized malignant mesothelioma. Ann Diagn Pathol 39:74–77. https://doi.org/10.1016/j.anndiagpath.2019.02.014

    Article  Google Scholar 

  39. Sabino MAC, Luger NM, Mach DB, Rogers SD, Schwei MJ, Mantyh PW (2003) Different tumors in bone each give rise to a distinct pattern of skeletal destruction, bone cancer-related pain behaviors and neurochemical changes in the central nervous system. Int J Cancer 104:550–558. https://doi.org/10.1002/ijc.10999

    Article  Google Scholar 

  40. Kaliki S, Rathi SG, Palkonda VAR (2018) Primary orbital Ewing sarcoma family of tumors: a study of 12 cases. Eye 32:615–621. https://doi.org/10.1038/eye.2017.278

    Article  Google Scholar 

  41. Goyal S, Roscoe J, Ryder WDJ, Gattamaneni HR, Eden TOB (2004) Symptom interval in young people with bone cancer. Eur J Cancer 40:2280–2286. https://doi.org/10.1016/j.ejca.2004.05.017

    Article  Google Scholar 

  42. Corre I, Verrecchia F, Crenn V, Redini F, Trichet V (2020) The osteosarcoma microenvironment: a complex but targetable ecosystem. Cells. https://doi.org/10.3390/cells9040976

    Article  Google Scholar 

  43. Glass AG, Fraumeni JF Jr (1970) Epidemiology of bone cancer in children. JNCI J Natl Cancer Inst 44:187–199. https://doi.org/10.1093/jnci/44.1.187

    Article  Google Scholar 

  44. Atallah JP, Elshenawy MA, Ali Badran A, Alata MK, Gad A, Alharbi AH, Alquaydheb HN, Alshamsan BI (2020) The outcome of vincristine, dactinomycin D, ifosfamide and doxorubicin (VAIA) as first-line therapy for adult-patients with metastatic ewing sarcoma; a single-center experience. J Clin Oncol 38:e23501–e23501. https://doi.org/10.1200/JCO.2020.38.15_suppl.e23501

    Article  Google Scholar 

  45. Scarborough JA, McClure E, Anderson P, Dhawan A, Durmaz A, Lessnick SL, Hitomi M, Scott JG (2020) Identifying states of collateral sensitivity during the evolution of therapeutic resistance in Ewing’s sarcoma. BioRxiv. https://doi.org/10.1101/2020.02.11.943936

    Article  Google Scholar 

  46. Miles DT, Voskuil RT, Dale W, Mayerson JL, Scharschmidt TJ (2020) Integration of denosumab therapy in the management of giant cell tumors of bone. J Orthop 22:38–47. https://doi.org/10.1016/j.jor.2020.03.020

    Article  Google Scholar 

  47. Sun J, Wei Q, Zhou Y, Wang J, Liu Q, Xu H (2017) A systematic analysis of FDA-approved anticancer drugs. BMC Syst Biol 11:87. https://doi.org/10.1186/s12918-017-0464-7

    Article  Google Scholar 

  48. Prasad SR, Jayakrishnan A, Kumar TSS (2020) Combinational delivery of anticancer drugs for osteosarcoma treatment using electrosprayed core shell nanocarriers. J Mater Sci Mater Med 31:44. https://doi.org/10.1007/s10856-020-06379-5

    Article  Google Scholar 

  49. Plichta Z, Horák D, Mareková D, Turnovcová K, Kaiser R, Jendelová P (2020) Poly[N-(2-hydroxypropyl)methacrylamide]-modified magnetic γ-F2O3 nanoparticles conjugated with doxorubicin for glioblastoma treatment. ChemMedChem 15:96–104. https://doi.org/10.1002/cmdc.201900564

    Article  Google Scholar 

  50. Ahmadi D, Zarei M, Rahimi M, Khazaie M, Asemi Z, Mir SM, Sadeghpour A, Karimian A, Alemi F, Rahmati-Yamchi M, Salehi R, Jadidi-Niaragh F, Yousefi M, Khelgati N, Majidinia M, Safa A, Yousefi B (2020) Preparation and in vitro evaluation of pH-responsive cationic cyclodextrin coated magnetic nanoparticles for delivery of methotrexate to the Saos-2 bone cancer cells. J Drug Deliv Sci Technol 57:101584. https://doi.org/10.1016/j.jddst.2020.101584

    Article  Google Scholar 

  51. Kinch MS, Hoyer D, Patridge E, Plummer M (2015) Target selection for FDA-approved medicines. Drug Discov Today 20:784–789. https://doi.org/10.1016/j.drudis.2014.11.001

    Article  Google Scholar 

  52. Bao Y, Kong X, Yang L, Liu R, Shi Z, Li W, Hua B, Hou W (2014) Complementary and alternative medicine for cancer pain: an overview of systematic reviews, evidence-based complement. Altern Med 2014:170396. https://doi.org/10.1155/2014/170396

    Article  Google Scholar 

  53. Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. In: Williams JC (ed) Biomaterials. Elsevier Science, Oxford, pp 175–189. https://doi.org/10.1016/B978-008045154-1.50021-6

    Chapter  Google Scholar 

  54. Bigham A, Saudi A, Rafienia M, Rahmati S, Bakhtiyari H, Salahshouri F, Sattary M, Hassanzadeh-Tabrizi SA (2019) Electrophoretically deposited mesoporous magnesium silicate with ordered nanopores as an antibiotic-loaded coating on surface-modified titanium. Mater Sci Eng, C 96:765–775. https://doi.org/10.1016/j.msec.2018.12.013

    Article  Google Scholar 

  55. R. Langer, J.P. Vacanti, Tissue engineering, Science (80-.). 260 (1993) 920 LP – 926. https://doi.org/10.1126/science.8493529

  56. Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4:518–524. https://doi.org/10.1038/nmat1421

    Article  Google Scholar 

  57. Hollister SJ (2009) Scaffold design and manufacturing: from concept to clinic. Adv Mater 21:3330–3342. https://doi.org/10.1002/adma.200802977

    Article  Google Scholar 

  58. Vallet-Regí M, González-Calbet JM (2004) Calcium phosphates as substitution of bone tissues. Prog Solid State Chem 32:1–31. https://doi.org/10.1016/j.progsolidstchem.2004.07.001

    Article  Google Scholar 

  59. Izquierdo-Barba I (2014) Scaffold designing. Bio-Ceram Clin Appl. https://doi.org/10.1002/9781118406748.ch10

    Article  Google Scholar 

  60. Bigham A, Aghajanian AH, Saudi A, Rafienia M (2020) Hierarchical porous Mg2SiO4–CoFe2O4 nanomagnetic scaffold for bone cancer therapy and regeneration: surface modification and in vitro studies. Mater Sci Eng, C 109:110579. https://doi.org/10.1016/j.msec.2019.110579

    Article  Google Scholar 

  61. Ansari M, Bigham A, Hassanzadeh Tabrizi SA, Abbastabar Ahangar H (2018) Copper-substituted spinel Zn–Mg ferrite nanoparticles as potential heating agents for hyperthermia. J Am Ceram Soc. https://doi.org/10.1111/jace.15510

    Article  Google Scholar 

  62. Farzin A, Fathi M, Emadi R (2017) Multifunctional magnetic nanostructured hardystonite scaffold for hyperthermia, drug delivery and tissue engineering applications. Mater Sci Eng, C 70:21–31. https://doi.org/10.1016/j.msec.2016.08.060

    Article  Google Scholar 

  63. Iqbal Y, Bae H, Rhee I, Hong S (2016) Control of the saturation temperature in magnetic heating by using polyethylene-glycol-coated rod-shaped nickel-ferrite (NiFe2O4) nanoparticles. J Korean Phys Soc 68:587–592. https://doi.org/10.3938/jkps.68.587

    Article  Google Scholar 

  64. Sun C, Lee JSH, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60:1252–1265. https://doi.org/10.1016/j.addr.2008.03.018

    Article  Google Scholar 

  65. Ansari M, Bigham A, Ahangar HA (2019) Super-paramagnetic nanostructured CuZnMg mixed spinel ferrite for bone tissue regeneration. Mater Sci Eng, C 105:110084. https://doi.org/10.1016/j.msec.2019.110084

    Article  Google Scholar 

  66. Bigham A, Aghajanian AH, Allahdaneh S, Hassanzadeh-Tabrizi SA (2019) Multifunctional mesoporous magnetic Mg2SiO4–CuFe2O4 core-shell nanocomposite for simultaneous bone cancer therapy and regeneration. Ceram Int 45:19481–19488. https://doi.org/10.1016/j.ceramint.2019.06.205

    Article  Google Scholar 

  67. Bigham A, Foroughi F, Motamedi M, Rafienia M (2018) Multifunctional nanoporous magnetic zinc silicate-ZnFe2O4 core-shell composite for bone tissue engineering applications. Ceram Int. https://doi.org/10.1016/j.ceramint.2018.03.264

    Article  Google Scholar 

  68. Hsiao C-W, Chuang E-Y, Chen H-L, Wan D, Korupalli C, Liao Z-X, Chiu Y-L, Chia W-T, Lin K-J, Sung H-W (2015) Photothermal tumor ablation in mice with repeated therapy sessions using NIR-absorbing micellar hydrogels formed in situ. Biomaterials 56:26–35. https://doi.org/10.1016/j.biomaterials.2015.03.060

    Article  Google Scholar 

  69. Chen Q, Xu L, Liang C, Wang C, Peng R, Liu Z (2016) Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat Commun 7:13193. https://doi.org/10.1038/ncomms13193

    Article  Google Scholar 

  70. Zhang C, Bu W, Ni D, Zuo C, Cheng C, Li Q, Zhang L, Wang Z, Shi J (2016) A polyoxometalate cluster paradigm with self-adaptive electronic structure for acidity/reducibility-specific photothermal conversion. J Am Chem Soc 138:8156–8164. https://doi.org/10.1021/jacs.6b03375

    Article  Google Scholar 

  71. Zhou F, Li X, Naylor MF, Hode T, Nordquist RE, Alleruzzo L, Raker J, Lam SSK, Du N, Shi L, Wang X, Chen WR (2015) InCVAX—a novel strategy for treatment of late-stage, metastatic cancers through photoimmunotherapy induced tumor-specific immunity. Cancer Lett 359:169–177. https://doi.org/10.1016/j.canlet.2015.01.029

    Article  Google Scholar 

  72. Dang W, Ma B, Huan Z, Lin R, Wang X, Li T, Wu J, Ma N, Zhu H, Chang J, Wu C (2019) LaB6 surface chemistry-reinforced scaffolds for treating bone tumors and bone defects. Appl Mater Today 16:42–55. https://doi.org/10.1016/j.apmt.2019.04.015

    Article  Google Scholar 

  73. Mehrafzoon S, Hassanzadeh-Tabrizi SA, Bigham A (2018) Synthesis of nanoporous Baghdadite by a modified sol-gel method and its structural and controlled release properties. Ceram Int. https://doi.org/10.1016/j.ceramint.2018.04.244

    Article  Google Scholar 

  74. Wang L, Cao J, Lei DL, Cheng XB, Zhou HZ, Hou R, Zhao YH, Cui FZ (2010) Application of nerve growth factor by gel increases formation of bone in mandibular distraction osteogenesis in rabbits. Br J Oral Maxillofac Surg 48:515–519. https://doi.org/10.1016/j.bjoms.2009.08.042

    Article  Google Scholar 

  75. Bigham A, Hassanzadeh-Tabrizi SA, Khamsehashari A, Chami A (2018) Surfactant-assisted sol–gel synthesis and characterization of hierarchical nanoporous merwinite with controllable drug release. J Sol–Gel Sci Technol 87:618–625. https://doi.org/10.1007/s10971-018-4777-9

    Article  Google Scholar 

  76. Foroughi F, Hassanzadeh-Tabrizi SA, Bigham A (2016) In situ microemulsion synthesis of hydroxyapatite-MgFe2O4 nanocomposite as a magnetic drug delivery system. Mater Sci Eng, C. https://doi.org/10.1016/j.msec.2016.07.028

    Article  Google Scholar 

  77. Ansari M, Bigham A, Hassanzadeh-Tabrizi SA, Abbastabar Ahangar H (2017) Synthesis and characterization of Cu0.3Zn0.5Mg0.2Fe2O4 nanoparticles as a magnetic drug delivery system. J Magn Magn Mater 439:67–75. https://doi.org/10.1016/j.jmmm.2017.04.084

    Article  Google Scholar 

  78. Abdal-hay A, Sheikh FA, Lim JK (2013) Air jet spinning of hydroxyapatite/poly(lactic acid) hybrid nanocomposite membrane mats for bone tissue engineering. Colloids Surf B Biointerfaces 102:635–643. https://doi.org/10.1016/j.colsurfb.2012.09.017

    Article  Google Scholar 

  79. Izquierdo-Barba I, Colilla M, Vallet-Regí M (2008) Nanostructured mesoporous silicas for bone tissue regeneration. J Nanomater 2008:106970. https://doi.org/10.1155/2008/106970

    Article  Google Scholar 

  80. Roy TD, Simon JL, Ricci JL, Rekow ED, Thompson VP, Parsons JR (2003) Performance of degradable composite bone repair products made via three-dimensional fabrication techniques. J Biomed Mater Res, Part A 66A:283–291. https://doi.org/10.1002/jbm.a.10582

    Article  Google Scholar 

  81. Deville S, Saiz E, Nalla RK, Tomsia AP (2006) Freezing as a path to build complex composites. Science 311:515–518. https://doi.org/10.1126/science.1120937

    Article  Google Scholar 

  82. Aghajanian AH, Bigham A, Khodaei M, Hossein Kelishadi S (2019) Porous titanium scaffold coated using forsterite/poly-3-hydroxybutyrate composite for bone tissue engineering. Surf Coat Technol 378:124942. https://doi.org/10.1016/j.surfcoat.2019.124942

    Article  Google Scholar 

  83. Almirall A, Larrecq G, Delgado JA, Martı́nez S, Planell JA, Ginebra MP (2004) Fabrication of low temperature macroporous hydroxyapatite scaffolds by foaming and hydrolysis of an α-TCP paste. Biomaterials 25:3671–3680. https://doi.org/10.1016/j.biomaterials.2003.10.066

    Article  Google Scholar 

  84. Yeong W-Y, Chua C-K, Leong K-F, Chandrasekaran M (2004) Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol 22:643–652. https://doi.org/10.1016/j.tibtech.2004.10.004

    Article  Google Scholar 

  85. Huang Z-M, Zhang Y-Z, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253. https://doi.org/10.1016/S0266-3538(03)00178-7

    Article  Google Scholar 

  86. Yoon JJ, Kim JH, Park TG (2003) Dexamethasone-releasing biodegradable polymer scaffolds fabricated by a gas-foaming/salt-leaching method. Biomaterials 24:2323–2329. https://doi.org/10.1016/S0142-9612(03)00024-3

    Article  Google Scholar 

  87. Baino F, Novajra G, Vitale-Brovarone C (2015) Bioceramics and scaffolds: a winning combination for tissue engineering. Front Bioeng Biotechnol 3:202. https://doi.org/10.3389/fbioe.2015.00202

    Article  Google Scholar 

  88. Abdellahi M, Najafinezhad A, Ghayour H, Saber-Samandari S, Khandan A (2017) Preparing diopside nanoparticle scaffolds via space holder method: simulation of the compressive strength and porosity. J Mech Behav Biomed Mater 72:171–181. https://doi.org/10.1016/j.jmbbm.2017.05.004

    Article  Google Scholar 

  89. Najafinezhad A, Abdellahi M, Nasiri-Harchegani S, Soheily A, Khezri M, Ghayour H (2017) On the synthesis of nanostructured akermanite scaffolds via space holder method: the effect of the spacer size on the porosity and mechanical properties. J Mech Behav Biomed Mater 69:242–248. https://doi.org/10.1016/j.jmbbm.2017.01.002

    Article  Google Scholar 

  90. Miao X, Lim W-K, Huang X, Chen Y (2005) Preparation and characterization of interpenetrating phased TCP/HA/PLGA composites. Mater Lett 59:4000–4005. https://doi.org/10.1016/j.matlet.2005.07.062

    Article  Google Scholar 

  91. Wu C, Fan W, Zhu Y, Gelinsky M, Chang J, Cuniberti G, Albrecht V, Friis T, Xiao Y (2011) Multifunctional magnetic mesoporous bioactive glass scaffolds with a hierarchical pore structure. Acta Biomater 7:3563–3572. https://doi.org/10.1016/j.actbio.2011.06.028

    Article  Google Scholar 

  92. Aghajanian AH, Khazaei BA, Khodaei M, Rafienia M (2018) Fabrication of porous Mg–Zn scaffold through modified replica method for bone tissue engineering. J Bionic Eng 15:907–913. https://doi.org/10.1007/s42235-018-0077-x

    Article  Google Scholar 

  93. Fukasawa T, Ando M, Ohji T, Kanzaki S (2001) Synthesis of porous ceramics with complex pore structure by freeze-dry processing. J Am Ceram Soc 84:230–232. https://doi.org/10.1111/j.1151-2916.2001.tb00638.x

    Article  Google Scholar 

  94. Fukasawa T, Deng Z-Y, Ando M, Ohji T, Kanzaki S (2002) Synthesis of porous silicon nitride with unidirectionally aligned channels using freeze-drying process. J Am Ceram Soc 85:2151–2155. https://doi.org/10.1111/j.1151-2916.2002.tb00426.x

    Article  Google Scholar 

  95. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431. https://doi.org/10.1016/j.biomaterials.2006.01.039

    Article  Google Scholar 

  96. Niu Y, Guo L, Liu J, Shen H, Su J, An X, Yu B, Wei J, Shin J-W, Guo H, Ji F, He D (2015) Bioactive and degradable scaffolds of the mesoporous bioglass and poly(l-lactide) composite for bone tissue regeneration. J Mater Chem B 3:2962–2970. https://doi.org/10.1039/C4TB01796J

    Article  Google Scholar 

  97. Ma Z, Kotaki M, Inai R, Ramakrishna S (2005) Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Eng 11:101–109. https://doi.org/10.1089/ten.2005.11.101

    Article  Google Scholar 

  98. Enayati MS, Behzad T, Sajkiewicz P, Rafienia M, Bagheri R, Ghasemi-Mobarakeh L, Kolbuk D, Pahlevanneshan Z, Bonakdar SH (2018) Development of electrospun poly (vinyl alcohol)-based bionanocomposite scaffolds for bone tissue engineering. J Biomed Mater Res, Part A 106:1111–1120. https://doi.org/10.1002/jbm.a.36309

    Article  Google Scholar 

  99. Yin Z, Chen X, Chen JL, Shen WL, Hieu Nguyen TM, Gao L, Ouyang HW (2010) The regulation of tendon stem cell differentiation by the alignment of nanofibers. Biomaterials 31:2163–2175. https://doi.org/10.1016/j.biomaterials.2009.11.083

    Article  Google Scholar 

  100. Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16:1151–1170. https://doi.org/10.1002/adma.200400719

    Article  Google Scholar 

  101. Agarwal S, Wendorff JH, Greiner A (2009) Progress in the field of electrospinning for tissue engineering applications. Adv Mater 21:3343–3351. https://doi.org/10.1002/adma.200803092

    Article  Google Scholar 

  102. Leong KF, Cheah CM, Chua CK (2003) Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 24:2363–2378. https://doi.org/10.1016/S0142-9612(03)00030-9

    Article  Google Scholar 

  103. Butscher A, Bohner M, Hofmann S, Gauckler L, Müller R (2011) Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing. Acta Biomater 7:907–920. https://doi.org/10.1016/j.actbio.2010.09.039

    Article  Google Scholar 

  104. Ghomi H, Jaberzadeh M, Fathi MH (2011) Novel fabrication of forsterite scaffold with improved mechanical properties. J Alloys Compd 509:L63–L68. https://doi.org/10.1016/j.jallcom.2010.10.106

    Article  Google Scholar 

  105. Abdellahi M, Karamian E, Najafinezhad A, Ranjabar F, Chami A, Khandan A (2018) Diopside-magnetite; a novel nanocomposite for hyperthermia applications. J Mech Behav Biomed Mater 77:534–538. https://doi.org/10.1016/j.jmbbm.2017.10.015

    Article  Google Scholar 

  106. Naeimi M, Rafienia M, Fathi M, Janmaleki M, Bonakdar S, Ebrahimian-Hosseinabadi M (2016) Incorporation of chitosan nanoparticles into silk fibroin-based porous scaffolds: chondrogenic differentiation of stem cells. Int J Polym Mater Polym Biomater 65:202–209. https://doi.org/10.1080/00914037.2015.1099103

    Article  Google Scholar 

  107. Toloue EB, Karbasi S, Salehi H, Rafienia M (2019) Potential of an electrospun composite scaffold of poly (3-hydroxybutyrate)-chitosan/alumina nanowires in bone tissue engineering applications. Mater Sci Eng, C 99:1075–1091. https://doi.org/10.1016/j.msec.2019.02.062

    Article  Google Scholar 

  108. Fu S, Hu H, Chen J, Zhu Y, Zhao S (2020) Silicone resin derived larnite/C scaffolds via 3D printing for potential tumor therapy and bone regeneration. Chem Eng J 382:122928. https://doi.org/10.1016/j.cej.2019.122928

    Article  Google Scholar 

  109. Schwartzalder K, Somers AV (1963) Method of making a porous shape of sintered refractory ceramic articles. https://patents.google.com/patent/US3090094A/en

  110. Bartonickova E, Ptacek P, Opravil T, Soukal F, Masilko J, Novotny R, Svec J, Havlica J (2015) Mullite-based refractories fabricated by foam casting. Ceram Int 41:14116–14123. https://doi.org/10.1016/j.ceramint.2015.07.032

    Article  Google Scholar 

  111. Deng X, Wang J, Huang Z, Zhao W, Li F, Zhang H (2015) Research progress in preparation of porous ceramics. Interceram Int Ceram Rev 64:100–103. https://doi.org/10.1007/BF03401108

    Article  Google Scholar 

  112. Bretcanu O, Misra S, Roy I, Renghini C, Fiori F, Boccaccini AR, Salih V (2009) In vitro biocompatibility of 45S5 Bioglass®-derived glass–ceramic scaffolds coated with poly(3-hydroxybutyrate). J Tissue Eng Regen Med 3:139–148. https://doi.org/10.1002/term.150

    Article  Google Scholar 

  113. Khamsehashari N, Hassanzadeh-Tabrizi SA, Bigham A (2018) Effects of strontium adding on the drug delivery behavior of silica nanoparticles synthesized by P123-assisted sol-gel method. Mater Chem Phys 205:283–291. https://doi.org/10.1016/j.matchemphys.2017.11.034

    Article  Google Scholar 

  114. Zhu Y, Shang F, Li B, Dong Y, Liu Y, Lohe MR, Hanagata N, Kaskel S (2013) Magnetic mesoporous bioactive glass scaffolds: preparation, physicochemistry and biological properties. J Mater Chem B 1:1279–1288. https://doi.org/10.1039/C2TB00262K

    Article  Google Scholar 

  115. Güden M, Çelik E, Hızal A, Altındiş M, Çetiner S (2008) Effects of compaction pressure and particle shape on the porosity and compression mechanical properties of sintered Ti6Al4V powder compacts for hard tissue implantation. J Biomed Mater Res Part B Appl Biomater 85B:547–555. https://doi.org/10.1002/jbm.b.30978

    Article  Google Scholar 

  116. Oh I-H, Nomura N, Masahashi N, Hanada S (2003) Mechanical properties of porous titanium compacts prepared by powder sintering. Scr Mater 49:1197–1202. https://doi.org/10.1016/j.scriptamat.2003.08.018

    Article  Google Scholar 

  117. Niu W, Bai C, Qiu G, Wang Q (2009) Processing and properties of porous titanium using space holder technique. Mater Sci Eng, A 506:148–151. https://doi.org/10.1016/j.msea.2008.11.022

    Article  Google Scholar 

  118. Dunand DC (2004) Processing of titanium foams. Adv Eng Mater 6:369–376. https://doi.org/10.1002/adem.200405576

    Article  Google Scholar 

  119. Arifvianto B, Zhou J (2014) Fabrication of metallic biomedical scaffolds with the space holder method: a review. Materials (Basel) 7:3588–3622. https://doi.org/10.3390/ma7053588

    Article  Google Scholar 

  120. Singh R, Lee PD, Dashwood RJ, Lindley TC (2010) Titanium foams for biomedical applications: a review. Mater Technol 25:127–136. https://doi.org/10.1179/175355510X12744412709403

    Article  Google Scholar 

  121. Wen CE, Mabuchi M, Yamada Y, Shimojima K, Chino Y, Asahina T (2001) Processing of biocompatible porous Ti and Mg. Scr Mater 45:1147–1153. https://doi.org/10.1016/S1359-6462(01)01132-0

    Article  Google Scholar 

  122. Torres Y, Pavón JJ, Rodríguez JA (2012) Processing and characterization of porous titanium for implants by using NaCl as space holder. J Mater Process Technol 212:1061–1069. https://doi.org/10.1016/j.jmatprotec.2011.12.015

    Article  Google Scholar 

  123. Laptev A, Bram M, Buchkremer HP, Stöver D (2004) Study of production route for titanium parts combining very high porosity and complex shape. Powder Metall 47:85–92. https://doi.org/10.1179/003258904225015536

    Article  Google Scholar 

  124. Gligor I, Soritau O, Todea M, Berce C, Vulpoi A, Marcu T, Cernea V, Simon S, Popa C (2013) Porous c.p. titanium using dextrin as space holder for endosseous implants. Part Sci Technol 31:357–365. https://doi.org/10.1080/02726351.2012.749556

    Article  Google Scholar 

  125. Zhao X, Sun H, Lan L, Huang J, Zhang H, Wang Y (2009) Pore structures of high-porosity NiTi alloys made from elemental powders with NaCl temporary space-holders. Mater Lett 63:2402–2404. https://doi.org/10.1016/j.matlet.2009.07.069

    Article  Google Scholar 

  126. Jakubowicz J, Adamek G, Dewidar M (2013) Titanium foam made with saccharose as a space holder. J Porous Mater 20:1137–1141. https://doi.org/10.1007/s10934-013-9696-0

    Article  Google Scholar 

  127. Najafinezhad A, Abdellahi M, Saber-Samandari S, Ghayour H, Khandan A (2018) Hydroxyapatite-M-type strontium hexaferrite: a new composite for hyperthermia applications. J Alloys Compd 734:290–300. https://doi.org/10.1016/j.jallcom.2017.10.138

    Article  Google Scholar 

  128. Sahmani S, Khandan A, Saber-Samandari S, Mohammadi Aghdam M (2020) Effect of magnetite nanoparticles on the biological and mechanical properties of hydroxyapatite porous scaffolds coated with ibuprofen drug. Mater Sci Eng, C 111:110835. https://doi.org/10.1016/j.msec.2020.110835

    Article  Google Scholar 

  129. Sill TJ, von Recum HA (2008) Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29:1989–2006. https://doi.org/10.1016/j.biomaterials.2008.01.011

    Article  Google Scholar 

  130. Rezvani Ghomi E, Khalili S, Nouri Khorasani S, Esmaeely Neisiany R, Ramakrishna S (2019) Wound dressings: current advances and future directions. J Appl Polym Sci 136:47738. https://doi.org/10.1002/app.47738

    Article  Google Scholar 

  131. Ramakrishna S, Fujihara K, Teo W-E, Yong T, Ma Z, Ramaseshan R (2006) Electrospun nanofibers: solving global issues. Mater Today 9:40–50. https://doi.org/10.1016/S1369-7021(06)71389-X

    Article  Google Scholar 

  132. Teo W-E, Ramakrishna S (2006) A review on electrospinning design and nanofibre assemblies. Nanotechnology 17:R89. https://doi.org/10.1088/0957-4484/17/14/R01

    Article  Google Scholar 

  133. Kim TG, Park S-H, Chung HJ, Yang D-Y, Park TG (2010) Microstructured scaffold coated with hydroxyapatite/collagen nanocomposite multilayer for enhanced osteogenic induction of human mesenchymal stem cells. J Mater Chem 20:8927–8933. https://doi.org/10.1039/C0JM01062F

    Article  Google Scholar 

  134. Dalby MJ, Gadegaard N, Tare R, Andar A, Riehle MO, Herzyk P, Wilkinson CDW, Oreffo ROC (2007) The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater 6:997–1003. https://doi.org/10.1038/nmat2013

    Article  Google Scholar 

  135. Pramanik S, Pingguan-Murphy B, Abu Osman NA (2012) Progress of key strategies in development of electrospun scaffolds: bone tissue. Sci Technol Adv Mater 13:43002. https://doi.org/10.1088/1468-6996/13/4/043002

    Article  Google Scholar 

  136. Neisiany RE, Enayati MS, Kazemi-Beydokhti A, Das O, Ramakrishna S (2020) Multilayered bio-based electrospun membranes: a potential porous media for filtration applications. Front Mater 7:67. https://doi.org/10.3389/fmats.2020.00067

    Article  Google Scholar 

  137. Khosravi F, Nouri Khorasani S, Rezvani Ghomi E, Kichi MK, Zilouei H, Farhadian M, Esmaeely Neisiany R (2019) A bilayer GO/nanofibrous biocomposite coating to enhance 316L stainless steel corrosion performance. Mater Res Express 6:086470. https://doi.org/10.1088/2053-1591/ab26d5

    Article  Google Scholar 

  138. Kim H-W, Song J-H, Kim H-E (2005) Nanofiber generation of gelatin-hydroxyapatite biomimetics for guided tissue regeneration. Adv Funct Mater 15:1988–1994. https://doi.org/10.1002/adfm.200500116

    Article  Google Scholar 

  139. Stanishevsky A, Chowdhury S, Chinoda P, Thomas V (2008) Hydroxyapatite nanoparticle loaded collagen fiber composites: microarchitecture and nanoindentation study. J Biomed Mater Res, Part A 86A:873–882. https://doi.org/10.1002/jbm.a.31657

    Article  Google Scholar 

  140. Fu S, Wang X, Guo G, Shi S, Liang H, Luo F, Wei Y, Qian Z (2010) Preparation and characterization of nano-hydroxyapatite/poly(ε-caprolactone) − poly(ethylene glycol) − poly(ε-caprolactone) composite fibers for tissue engineering. J Phys Chem C 114:18372–18378. https://doi.org/10.1021/jp106488t

    Article  Google Scholar 

  141. Khosravi F, Nouri Khorasani S, Khalili S, Esmaeely Neisiany R, Rezvani Ghomi E, Ejeian F, Das O, Nasr-Esfahani HM (2020) Development of a highly proliferated bilayer coating on 316L stainless steel implants. Polymers 12:1022. https://doi.org/10.3390/polym12051022

    Article  Google Scholar 

  142. Gloria A, Russo T, D’Amora U, Zeppetelli S, D’Alessandro T, Sandri M, Bañobre-López M, Piñeiro-Redondo Y, Uhlarz M, Tampieri A, Rivas J, Herrmannsdörfer T, Dediu VA, Ambrosio L, De Santis R (2013) Magnetic poly(ε-caprolactone)/iron-doped hydroxyapatite nanocomposite substrates for advanced bone tissue engineering. J R Soc Interface 10:20120833. https://doi.org/10.1098/rsif.2012.0833

    Article  Google Scholar 

  143. Amarjargal A, Tijing LD, Park C-H, Im I-T, Kim CS (2013) Controlled assembly of superparamagnetic iron oxide nanoparticles on electrospun PU nanofibrous membrane: a novel heat-generating substrate for magnetic hyperthermia application. Eur Polym J 49:3796–3805. https://doi.org/10.1016/j.eurpolymj.2013.08.026

    Article  Google Scholar 

  144. Meng J, Xiao B, Zhang Y, Liu J, Xue H, Lei J, Kong H, Huang Y, Jin Z, Gu N, Xu H (2013) Super-paramagnetic responsive nanofibrous scaffolds under static magnetic field enhance osteogenesis for bone repair in vivo. Sci Rep 3:2655. https://doi.org/10.1038/srep02655

    Article  Google Scholar 

  145. Radmansouri M, Bahmani E, Sarikhani E, Rahmani K, Sharifianjazi F, Irani M (2018) Doxorubicin hydrochloride—loaded electrospun chitosan/cobalt ferrite/titanium oxide nanofibers for hyperthermic tumor cell treatment and controlled drug release. Int J Biol Macromol 116:378–384. https://doi.org/10.1016/j.ijbiomac.2018.04.161

    Article  Google Scholar 

  146. Mishra R, Bishop T, Valerio IL, Fisher JP, Dean D (2016) The potential impact of bone tissue engineering in the clinic. Regen Med 11:571–587. https://doi.org/10.2217/rme-2016-0042

    Article  Google Scholar 

  147. Lu Y, Chen G, Long Z, Li M, Ji C, Wang F, Li H, Lu J, Wang Z, Li J (2019) Novel 3D-printed prosthetic composite for reconstruction of massive bone defects in lower extremities after malignant tumor resection. J Bone Oncol 16:100220. https://doi.org/10.1016/j.jbo.2019.100220

    Article  Google Scholar 

  148. Ke X, Qiu J, Wang X, Yang X, Shen J, Ye S, Yang G, Xu S, Bi Q, Gou Z, Jia X, Zhang L (2020) Modification of pore-wall in direct ink writing wollastonite scaffolds favorable for tuning biodegradation and mechanical stability and enhancing osteogenic capability. FASEB J 34:5673–5687. https://doi.org/10.1096/fj.201903044R

    Article  Google Scholar 

  149. Chen Y, Han P, Vandi L-J, Dehghan-Manshadi A, Humphry J, Kent D, Stefani I, Lee P, Heitzmann M, Cooper-White J, Dargusch M (2019) A biocompatible thermoset polymer binder for Direct Ink Writing of porous titanium scaffolds for bone tissue engineering. Mater Sci Eng, C 95:160–165. https://doi.org/10.1016/j.msec.2018.10.033

    Article  Google Scholar 

  150. Kanczler JM, Wells JA, Gibbs DMR, Marshall KM, Tang DKO, Oreffo ROC (2020) Chapter 50—Bone tissue engineering and bone regeneration. In: Lanza R, Langer R, Vacanti JP, Atala E (eds) Principles of tissue engineering, 5th edn. Academic Press, Cambridge, pp 917–935. https://doi.org/10.1016/B978-0-12-818422-6.00052-6

    Chapter  Google Scholar 

  151. Kondiah PPD, Choonara YE, Kondiah PJ, Marimuthu T, du Toit LC, Kumar P, Pillay V (2020) Recent progress in 3D-printed polymeric scaffolds for bone tissue engineering. In: du Toit LC, Kumar P, Choonara YE, Pillay TE (eds) Woodhead publishing series in biomaterials. Elsevier, Amsterdam, pp 59–81. https://doi.org/10.1016/B978-0-12-818471-4.00003-0

    Chapter  Google Scholar 

  152. MorenoMadrid AP, Vrech SM, Sanchez MA, Rodriguez AP (2019) Advances in additive manufacturing for bone tissue engineering scaffolds. Mater Sci Eng, C 100:631–644. https://doi.org/10.1016/j.msec.2019.03.037

    Article  Google Scholar 

  153. Emre Ö, Mirigul A (2019) Effect of structural hybrid design on mechanical and biological properties of CoCr scaffolds fabricated by selective laser melting. Rapid Prototyp J 26:615–624. https://doi.org/10.1108/RPJ-07-2019-0186

    Article  Google Scholar 

  154. Qu H (2020) Additive manufacturing for bone tissue engineering scaffolds. Mater Today Commun 24:101024. https://doi.org/10.1016/j.mtcomm.2020.101024

    Article  Google Scholar 

  155. Esslinger S, Gadow R (2020) Additive manufacturing of bioceramic scaffolds by combination of FDM and slip casting. J Eur Ceram Soc 40:3707–3713. https://doi.org/10.1016/j.jeurceramsoc.2019.10.029

    Article  Google Scholar 

  156. Choi WJ, Hwang KS, Kwon HJ, Lee C, Kim CH, Kim TH, Heo SW, Kim J-H, Lee J-Y (2020) Rapid development of dual porous poly(lactic acid) foam using fused deposition modeling (FDM) 3D printing for medical scaffold application. Mater Sci Eng, C 110:110693. https://doi.org/10.1016/j.msec.2020.110693

    Article  Google Scholar 

  157. Kholgh Eshkalak S, Rezvani Ghomi E, Dai Y, Choudhury D, Ramakrishna S (2020) The role of three-dimensional printing in healthcare and medicine. Mater Des 194:108940. https://doi.org/10.1016/j.matdes.2020.108940

    Article  Google Scholar 

  158. Ji K, Wang Y, Wei Q, Zhang K, Jiang A, Rao Y, Cai X (2018) Application of 3D printing technology in bone tissue engineering. Bio-Des Manuf 1:203–210. https://doi.org/10.1007/s42242-018-0021-2

    Article  Google Scholar 

  159. Ma H, Jiang C, Zhai D, Luo Y, Chen Y, Lv F, Yi Z, Deng Y, Wang J, Chang J, Wu C (2016) A bifunctional biomaterial with photothermal effect for tumor therapy and bone regeneration. Adv Funct Mater 26:1197–1208. https://doi.org/10.1002/adfm.201504142

    Article  Google Scholar 

  160. Ma H, Luo J, Sun Z, Xia L, Shi M, Liu M, Chang J, Wu C (2016) 3D printing of biomaterials with mussel-inspired nanostructures for tumor therapy and tissue regeneration. Biomaterials 111:138–148. https://doi.org/10.1016/j.biomaterials.2016.10.005

    Article  Google Scholar 

  161. Khandan A, Ozada N, Saber-Samandari S, Ghadiri Nejad M (2018) On the mechanical and biological properties of bredigite-magnetite (Ca7MgSi4O16–Fe3O4) nanocomposite scaffolds. Ceram Int 44:3141–3148. https://doi.org/10.1016/j.ceramint.2017.11.082

    Article  Google Scholar 

  162. Lu J-W, Yang F, Ke Q-F, Xie X-T, Guo Y-P (2018) Magnetic nanoparticles modified-porous scaffolds for bone regeneration and photothermal therapy against tumors. Nanomed Nanotechnol Biol Med 14:811–822. https://doi.org/10.1016/j.nano.2017.12.025

    Article  Google Scholar 

  163. Wang H, Zeng X, Pang L, Wang H, Lin B, Deng Z, Qi ELX, Miao N, Wang D, Huang P, Hu H, Li J (2020) Integrative treatment of anti-tumor/bone repair by combination of MoS2 nanosheets with 3D printed bioactive borosilicate glass scaffolds. Chem Eng J 396:125081. https://doi.org/10.1016/j.cej.2020.125081

    Article  Google Scholar 

  164. Liu Y, Lin R, Ma L, Zhuang H, Feng C, Chang J, Wu C (2020) Mesoporous bioactive glass for synergistic therapy of tumor and regeneration of bone tissue. Appl Mater Today 19:100578. https://doi.org/10.1016/j.apmt.2020.100578

    Article  Google Scholar 

  165. Liu Y, Li T, Ma H, Zhai D, Deng C, Wang J, Zhuo S, Chang J, Wu C (2018) 3D-printed scaffolds with bioactive elements-induced photothermal effect for bone tumor therapy. Acta Biomater 73:531–546. https://doi.org/10.1016/j.actbio.2018.04.014

    Article  Google Scholar 

  166. Wu C, Zhou Y, Xu M, Han P, Chen L, Chang J, Xiao Y (2013) Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomaterials 34:422–433. https://doi.org/10.1016/j.biomaterials.2012.09.066

    Article  Google Scholar 

  167. Wu C, Zhou Y, Fan W, Han P, Chang J, Yuen J, Zhang M, Xiao Y (2012) Hypoxia-mimicking mesoporous bioactive glass scaffolds with controllable cobalt ion release for bone tissue engineering. Biomaterials 33:2076–2085. https://doi.org/10.1016/j.biomaterials.2011.11.042

    Article  Google Scholar 

  168. Hadidi M, Bigham A, Saebnoori E, Hassanzadeh-Tabrizi SA, Rahmati S, Alizadeh ZM, Nasirian V, Rafienia M (2017) Electrophoretic-deposited hydroxyapatite-copper nanocomposite as an antibacterial coating for biomedical applications. Surf Coat Technol. https://doi.org/10.1016/j.surfcoat.2017.04.055

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AB, FF, and ERG summarized the literature and wrote a major part of the manuscript. MR, REN, and SR conducted the deep review, editing, guidance, and supervision. All authors have read and approved the article for publication.

Corresponding authors

Correspondence to Mohammad Rafienia or Seeram Ramakrishna.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bigham, A., Foroughi, F., Rezvani Ghomi, E. et al. The journey of multifunctional bone scaffolds fabricated from traditional toward modern techniques. Bio-des. Manuf. 3, 281–306 (2020). https://doi.org/10.1007/s42242-020-00094-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42242-020-00094-4

Keywords

Navigation