1 Introduction

Schwartz introduced the space \({\mathcal {S}}'(\Gamma )\) of Laplace transformable distributions as

$$\begin{aligned} {\mathcal {S}}'(\Gamma ) = \{ f \in {\mathcal {D}}'({\mathbb {R}}^d)\ |\ e^{-\xi \cdot x} f(x) \in {\mathcal {S}}'({\mathbb {R}}^d_x)\ \forall \xi \in \Gamma \}, \end{aligned}$$

where \(\Gamma \subseteq {\mathbb {R}}^d\) is a non-empty convex set [1, p. 303]. This space is endowed with the projective limit topology with respect to the mappings \({\mathcal {S}}'(\Gamma ) \rightarrow {\mathcal {S}}'({\mathbb {R}}^d)\), \(f \mapsto e^{-\xi \cdot x} f(x)\) for \(\xi \in \Gamma \). The second author together with Kunzinger and Ortner [2] recently presented two new proofs of Schwartz’s exchange theorem for the Laplace transform of vector-valued distributions [3, Prop. 4.3, p. 186]. Their methods required them to show that \({\mathcal {S}}'(\Gamma )\) is complete, nuclear and dual-nuclear [2, Lemma 5]. Following a suggestion of Ortner, in this article, we further study the locally convex structure of the space \({\mathcal {S}}'(\Gamma )\).

In order to be able to apply functional analytic tools such as De Wilde’s open mapping and closed graph theorems [4, Theorem 24.30 and Theorem 24.31] or the theory of the derived projective limit functor [5], it is important to determine when a space is ultrabornological. This is usually straightforward if the space is given by a suitable inductive limit; in fact, ultrabornological spaces are exactly the inductive limits of Banach spaces [4, Proposition 24.14]. The situation for projective limits, however, is more complicated. Particularly, this applies to the class of (PLS)-spaces (i.e., countable projective limits of (DFS)-spaces). The problem of ultrabornologicity has been extensively studied in this class, both from an abstract point of view as for concrete function and distribution spaces; see the survey article [6] of Domański and the references therein.

In the last part of his doctoral thesis [7, Chap. II, Thm. 16, p. 131], Grothendieck showed that the convolutor space \({\mathcal {O}}_C'\) is ultrabornological. He proved that \({\mathcal {O}}_C'\) is isomorphic to a complemented subspace of the sequence space \(s {\widehat{\otimes }} s'\) and verified directly that the latter space is ultrabornological. Much later, a different proof was given by Larcher and Wengenroth using homological methods [8]. The first author and Vindas [9] extended this result to a considerably wider setting by studying the locally convex structure of a general class of weighted convolutor spaces. More precisely, they characterized when such spaces are ultrabornological and determined explicit topological preduals for them. One of their main tools is a topological description of these convolutor spaces in terms of the short-time Fourier transform (STFT).

In this work, we will identify \({\mathcal {S}}'(\Gamma )\) with a particular instance of the convolutor spaces considered in [9]. To this end, we make a detailed study of the mapping properties of the STFT on \({\mathcal {S}}'(\Gamma )\). Once this identification has been established, we use Theorem 1.1 from [9] (see also Theorem 4.2 below) to show that \({\mathcal {S}}'(\Gamma )\) is an ultrabornological (PLS)-space and that it admits a weighted (LF)-space of smooth functions on \({\mathbb {R}}^d\) as a topological predual.

2 Weighted spaces of continuous functions

For formulating the mapping properties of the STFT we recall the following notions from [9, 10].

Each non-negative function v on \({\mathbb {R}}^d\) defines a weighted seminorm on \(C({\mathbb {R}}^d)\) by

$$\begin{aligned} \Vert f\Vert _{v} \mathrel {\mathop :}=\sup _{x \in {\mathbb {R}}^d} \left| f(x)\right| v(x). \end{aligned}$$

We endow the space

$$\begin{aligned} Cv({\mathbb {R}}^d) \mathrel {\mathop :}=\{ f \in C({\mathbb {R}}^d)\ |\ \Vert f\Vert _{v} < \infty \} \end{aligned}$$

with this seminorm; it is a Banach space if v is positive and continuous. A pointwise decreasing sequence \({\mathcal {V}} = (v_N)_{N \in {\mathbb {N}}}\) of positive continuous functions on \({\mathbb {R}}^d\) is called a decreasing weight system. With this, we define the (LB)-space

$$\begin{aligned} {\mathcal {V}}C({\mathbb {R}}^d)\mathrel {\mathop :}=\varinjlim _{N \in {\mathbb {N}}} Cv_N({\mathbb {R}}^d). \end{aligned}$$

We consider the following condition on a decreasing weight system \({\mathcal {V}}\), see [10, p. 114]:

$$\begin{aligned} \forall N \in {\mathbb {N}}\, \exists M > N \, : \, \lim _{\left| x\right| \rightarrow \infty }\frac{v_M(x)}{v_N(x)} = 0. \end{aligned}$$
(V)

The maximal Nachbin family associated with \({\mathcal {V}}\) is defined to be the family \({\overline{V}}={\overline{V}}({\mathcal {V}})\) consisting of all non-negative upper semicontinuous functions v on \({\mathbb {R}}^d\) such that

$$\begin{aligned} \forall N \in {\mathbb {N}}\, : \,\sup _{x \in {\mathbb {R}}^d} \frac{v(x)}{v_N(x)} < \infty . \end{aligned}$$

The projective hull of \({\mathcal {V}}C({\mathbb {R}}^d)\) is defined as

$$\begin{aligned} C{\overline{V}}({\mathbb {R}}^d) \mathrel {\mathop :}=\{ f \in C({\mathbb {R}}^d)\ |\ \Vert f\Vert _{v} < \infty \ \forall v \in {\overline{V}} \}. \end{aligned}$$

and endowed with the locally convex topology generated by the system of seminorms \(\{ \Vert \,\cdot \,\Vert _{v} \, | \, v \in {\overline{V}} \}\). The spaces \({\mathcal {V}}C({\mathbb {R}}^d)\) and \(C{\overline{V}}({\mathbb {R}}^d)\) always coincide as sets and, if \({\mathcal {V}}\) satisfies condition (V), also as locally convex spaces [10, Thm. 1.3 (d), p. 118].

A pointwise increasing sequence \({\mathcal {W}} = (w_N)_{N \in {\mathbb {N}}}\) of positive continuous functions on \({\mathbb {R}}^d\) is called an increasing weight system. Given such a system, we define the Fréchet space

$$\begin{aligned} {\mathcal {W}}C({\mathbb {R}}^d)\mathrel {\mathop :}=\varprojlim _{N \in {\mathbb {N}}} Cw_N({\mathbb {R}}^d). \end{aligned}$$

We consider the following conditions on an increasing weight system \({\mathcal {W}}\):

$$\begin{aligned}&\forall N \in {\mathbb {N}}\, \exists M > N \, : \, \lim _{\left| x\right| \rightarrow \infty }\frac{w_N(x)}{w_M(x)} = 0, \end{aligned}$$
(2.1)
$$\begin{aligned}&\forall N \in {\mathbb {N}}\, \exists M > N : \frac{w_N}{w_M} \in L^1({\mathbb {R}}^d), \end{aligned}$$
(2.2)
$$\begin{aligned}&\forall N \in {\mathbb {N}}\, \exists M_1,M_2 \ge N \, \exists C > 0 \, \forall x,y \in {\mathbb {R}}^d : w_N(x+y) \le C w_{M_1}(x) w_{M_2}(y). \end{aligned}$$
(2.3)

In the next lemma, we obtain a concrete representation of the \(\varepsilon \)-tensor product of weighted spaces of continuous functions.

Lemma 2.1

Let \({\mathcal {W}} = (w_N)_{N \in {\mathbb {N}}}\) be an increasing weight system and \({\mathcal {V}} = (v_n)_{n \in {\mathbb {N}}}\) a decreasing weight system satisfying (V). Then, we have the identification

$$\begin{aligned} {\mathcal {W}}C({\mathbb {R}}^d_x) {\widehat{\otimes }}_\varepsilon {\mathcal {V}}C({\mathbb {R}}^d_\xi ) = \{ f \in C({\mathbb {R}}^{2d}_{x,\xi })\ |\ \forall N \in {\mathbb {N}}\ \exists n \in {\mathbb {N}}: \Vert f\Vert _{w_N \otimes v_n} < \infty \}, \end{aligned}$$

where we set \(\Vert f\Vert _{w \otimes v} \mathrel {\mathop :}=\sup _{(x,\xi ) \in {\mathbb {R}}^{2d}} \left| f(x,\xi )\right| w(x) v(\xi )\) for non-negative functions wv on \({\mathbb {R}}^d\). Moreover, \(f \in C({\mathbb {R}}^{2d}_{x,\xi })\) belongs to \({\mathcal {W}}C({\mathbb {R}}^d_x) {\widehat{\otimes }}_\varepsilon {\mathcal {V}}C({\mathbb {R}}^d_\xi )\) if and only if \(\Vert f\Vert _{w_N \otimes v} < \infty \) for all \(N \in {\mathbb {N}}\) and \(v \in {\overline{V}}\). Consequently, the topology of \({\mathcal {W}}C({\mathbb {R}}^d_x) {\widehat{\otimes }}_\varepsilon {\mathcal {V}}C({\mathbb {R}}^d_\xi )\) is generated by the system of seminorms \(\{ \Vert \, \cdot \, \Vert _{w_N \otimes v} \, | \, N \in {\mathbb {N}}, v \in {\overline{V}} \}\).

Proof

This follows from the fact that the \(\varepsilon \)-tensor product commutes with projective limits and [10, Thm. 3.1 (c), p. 137]. \(\square \)

3 The short-time Fourier transform on \({\mathcal {D}}'({\mathbb {R}}^d)\)

The translation and modulation operators are denoted by \(T_xf(t) = f(t-x)\) and \(M_\xi f(t) = e^{2\pi i \xi \cdot t} f(t)\) for \(x, \xi \in {\mathbb {R}}^d\). The short-time Fourier transform (STFT) of a function \(f \in L^2({\mathbb {R}}^d)\) with respect to a window function \(\psi \in L^2({\mathbb {R}}^d)\) is defined as

$$\begin{aligned} V_\psi f(x,\xi ) \mathrel {\mathop :}=(f, M_\xi T_x\psi )_{L^2} = \int _{{\mathbb {R}}^d} f(t) \overline{\psi (t-x)}e^{-2\pi i \xi \cdot t}\, \mathrm{d}t , \qquad (x, \xi ) \in {\mathbb {R}}^{2d}, \end{aligned}$$

where \((\cdot ,\cdot )_{L^2}\) denotes the inner product on \(L^2({\mathbb {R}}^d)\). We have that \(\Vert V_\psi f\Vert _{L^2({\mathbb {R}}^{2d})} = \Vert \psi \Vert _{L^2}\Vert f\Vert _{L^2}\). In particular, the mapping \(V_\psi :L^2({\mathbb {R}}^d) \rightarrow L^2({\mathbb {R}}^{2d})\) is continuous. The adjoint of \(V_\psi \) is given by the weak integral

$$\begin{aligned} V^*_\psi F = \int \int _{{\mathbb {R}}^{2d}} F(x,\xi ) M_\xi T_x\psi \, \mathrm{d}x \, \mathrm{d}\xi , \qquad F \in L^2({\mathbb {R}}^{2d}). \end{aligned}$$

If \(\psi \ne 0\) and \(\gamma \in L^2({\mathbb {R}}^d)\) is a synthesis window for \(\psi \), that is, \((\gamma , \psi )_{L^2} \ne 0\), then

$$\begin{aligned} \frac{1}{(\gamma , \psi )_{L^2}} V^*_\gamma \circ V_\psi = {{\,\mathrm{id}\,}}_{L^2({\mathbb {R}}^d)}. \end{aligned}$$

We refer to [11] for further properties of the STFT.

Next, we explain how the STFT can be extended to the space of distributions; see [9, Sect. 2] for details and proofs. We set \({\mathcal {V}}_{{\text {pol}}} = ((1+ \left| \, \cdot \, \right| )^{-N})_{N \in {\mathbb {N}}}.\) Fix a window function \(\psi \in {\mathcal {D}}({\mathbb {R}}^d)\). For \(f \in {\mathcal {D}}'({\mathbb {R}}^d)\) we define

$$\begin{aligned} V_\psi f(x,\xi ) \mathrel {\mathop :}=\langle f, \overline{M_\xi T_x\psi } \rangle , \qquad (x,\xi ) \in {\mathbb {R}}^{2d}. \end{aligned}$$

Clearly, \(V_\psi f\) is a continuous function on \({\mathbb {R}}^{2d}\). In fact,

$$\begin{aligned} V_\psi :{\mathcal {D}}'({\mathbb {R}}^d) \rightarrow C({\mathbb {R}}^d_x) {\widehat{\otimes }}_\varepsilon {\mathcal {V}}_{{\text {pol}}}C({\mathbb {R}}^d_\xi ) \end{aligned}$$

is a well-defined continuous mapping [9, Lemma 2.2]. We define the adjoint STFT of an element \(F \in C({\mathbb {R}}^d_x) {\widehat{\otimes }}_\varepsilon {\mathcal {V}}_{{\text {pol}}}C({\mathbb {R}}^d_\xi )\) as the distribution

$$\begin{aligned} \langle V^*_\psi F, \varphi \rangle \mathrel {\mathop :}=\int \int _{{\mathbb {R}}^{2d}} F(x,\xi ) V_{{\overline{\psi }}}\varphi (x, -\xi )\,\mathrm{d}x \,\mathrm{d}\xi , \qquad \varphi \in {\mathcal {D}}({\mathbb {R}}^d). \end{aligned}$$

Then,

$$\begin{aligned} V^*_\psi :C({\mathbb {R}}^d_x) {\widehat{\otimes }}_\varepsilon {\mathcal {V}}_{{\text {pol}}}C({\mathbb {R}}^d_\xi ) \rightarrow {\mathcal {D}}'({\mathbb {R}}^d) \end{aligned}$$

is a well-defined continuous mapping by [9, Prop. 2.2]. Finally, if \(\psi \ne 0\) and \(\gamma \in {\mathcal {D}}({\mathbb {R}}^d)\) is a synthesis window for \(\psi \), then the following reconstruction formula holds [9, Prop. 2.4]:

$$\begin{aligned} \frac{1}{(\gamma , \psi )_{L^2}} V^*_\gamma \circ V_\psi = {\text {id}}_{{\mathcal {D}}'({\mathbb {R}}^d)}. \end{aligned}$$
(3.1)

4 Duals of inductive limits of weighted spaces of smooth functions

Let v be a non-negative function on \({\mathbb {R}}^d\) and \(n \in {\mathbb {N}}\). We define \({\mathcal {B}}^n_v({\mathbb {R}}^d)\) as the seminormed space consisting of all \(\varphi \in C^n({\mathbb {R}}^d)\) such that

$$\begin{aligned} \Vert \varphi \Vert _{v,n} \mathrel {\mathop :}=\max _{\left| \alpha \right| \le n} \sup _{x \in {\mathbb {R}}^d} \left| \partial ^{\alpha }\varphi (x)\right| v(x) < \infty . \end{aligned}$$

As before, \({\mathcal {B}}^n_v({\mathbb {R}}^d)\) is a Banach space if v is positive and continuous. Let \({\mathcal {W}} = (w_N)_{N \in {\mathbb {N}}}\) be an increasing weight system. We define the (LF)-space

$$\begin{aligned} {\mathcal {B}}_{{\mathcal {W}}^\circ }({\mathbb {R}}^d) := \varinjlim _{N \in {\mathbb {N}}} \varprojlim _{n \in {\mathbb {N}}} {\mathcal {B}}^n_{1/w_N}({\mathbb {R}}^d). \end{aligned}$$

We endow the dual space \({\mathcal {B}}'_{{\mathcal {W}}}({\mathbb {R}}^d) \mathrel {\mathop :}=({\mathcal {B}}_{{\mathcal {W}}^\circ }({\mathbb {R}}^d))'\) with the strong topology. If \({\mathcal {W}}\) satisfies (2.1), then \({\mathcal {D}}({\mathbb {R}})\) is densely and continuously included in \({\mathcal {B}}_{{\mathcal {W}}^\circ }({\mathbb {R}}^d)\) and therefore \({\mathcal {B}}'_{{\mathcal {W}}}({\mathbb {R}}^d)\) is a vector subspace of \({\mathcal {D}}'({\mathbb {R}}^d)\).

On the other hand, we define the convolutor space

$$\begin{aligned} {\mathcal {O}}'_{C,{\mathcal {W}}}({\mathbb {R}}^d) \mathrel {\mathop :}=\{ f \in {\mathcal {D}}'({\mathbb {R}}^d)\ |\ f *\varphi \in {\mathcal {W}}C({\mathbb {R}}^d)\ \forall \varphi \in {\mathcal {D}}({\mathbb {R}}^d) \}. \end{aligned}$$

For \(f \in {\mathcal {O}}'_{C,{\mathcal {W}}}({\mathbb {R}}^d)\) fixed, the mapping

$$\begin{aligned} {\mathcal {D}}({\mathbb {R}}^d) \rightarrow {{\mathcal {W}}}C({\mathbb {R}}^d),\quad \varphi \mapsto f *\varphi \end{aligned}$$

is continuous, as follows from the closed graph theorem. We endow \({\mathcal {O}}'_{C,{\mathcal {W}}}({\mathbb {R}}^d)\) with the topology induced via the embedding

$$\begin{aligned} {\mathcal {O}}'_{C,{\mathcal {W}}}({\mathbb {R}}^d) \rightarrow L_\beta ({\mathcal {D}}({\mathbb {R}}^d), {\mathcal {W}}C({\mathbb {R}}^d)),\quad f \mapsto [\varphi \mapsto f *\varphi ], \end{aligned}$$

where \(\beta \) denotes the topology of uniform convergence on bounded sets.

In [9] the structural and topological properties of the spaces \({\mathcal {B}}'_{{\mathcal {W}}}({\mathbb {R}}^d)\) and \({\mathcal {O}}'_{C,{\mathcal {W}}}({\mathbb {R}}^d)\) are discussed. We now present the main results of this paper and refer to [9] for more details and proofs.Footnote 1

Proposition 4.1

[9, Prop. 4.2] Let \({\mathcal {W}}\) be an increasing weight system satisfying (2.1), (2.2) and (2.3) and let \(\psi \in {\mathcal {D}}({\mathbb {R}}^d)\). Then, the mappings

$$\begin{aligned} V_\psi :{\mathcal {O}}'_{C,{\mathcal {W}}}({\mathbb {R}}^d) \rightarrow {\mathcal {W}}C({\mathbb {R}}^d_x) {\widehat{\otimes }}_\varepsilon {\mathcal {V}}_{{\text {pol}}}C({\mathbb {R}}^d_\xi ) \end{aligned}$$

and

$$\begin{aligned} V^*_\psi :{\mathcal {W}}C({\mathbb {R}}^d_x) {\widehat{\otimes }}_\varepsilon {\mathcal {V}}_{{\text {pol}}}C({\mathbb {R}}^d_\xi ) \rightarrow {\mathcal {O}}'_{C,{\mathcal {W}}}({\mathbb {R}}^d) \end{aligned}$$

are well-defined and continuous.

Theorem 4.2

[9, Thm. 3.4, Thm. 4.6 and Thm. 4.15] Let \({\mathcal {W}} = (w_N)_{N \in {\mathbb {N}}}\) be an increasing weight system satisfying (2.1), (2.2) and (2.3). Then, \({\mathcal {B}}'_{{\mathcal {W}}}({\mathbb {R}}^d) = {\mathcal {O}}'_{C,{\mathcal {W}}}({\mathbb {R}}^d)\) as sets and the inclusion mapping \({\mathcal {B}}'_{{\mathcal {W}}}({\mathbb {R}}^d) \rightarrow {\mathcal {O}}'_{C,{\mathcal {W}}}({\mathbb {R}}^d)\) is continuous. Moreover, the following statements are equivalent:

(i):

\({\mathcal {B}}'_{{\mathcal {W}}}({\mathbb {R}}^d) = {\mathcal {O}}'_{C,{\mathcal {W}}}({\mathbb {R}}^d)\) as locally convex spaces.

(ii):

\({\mathcal {O}}'_{C,{\mathcal {W}}}({\mathbb {R}}^d)\) is an ultrabornological (PLS)-space.

(iii):

The (LF)-space \({\mathcal {B}}_{{\mathcal {W}}^\circ }({\mathbb {R}}^d)\) is complete.

(iv):

\({\mathcal {W}}\) satisfies

$$\begin{aligned}&\forall N \in {\mathbb {N}}\, \exists M \ge N \, \forall P \ge M \, \exists \theta \in (0,1) \, \exists C > 0 \, \forall x \in {\mathbb {R}}^d: \nonumber \\&{w_N(x)}^{1-\theta }{w_P(x)}^{\theta } \le Cw_M(x). \end{aligned}$$
(4.1)

Remark 4.3

Condition (4.1) is closely connected with D. Vogt’s condition \((\Omega )\) that plays an essential role in the structure and splitting theory for Fréchet spaces.

5 The space \({\mathcal {S}}'(\Gamma )\)

Our next goal is to characterize \({\mathcal {S}}'(\Gamma )\) in terms of the STFT.

Let \(\emptyset \ne \Gamma \subseteq {\mathbb {R}}^d\) be open and convex. We denote by \({\text {CCS}}(\Gamma )\) the family of all non-empty compact convex subsets of \(\Gamma \) and by \({\mathfrak {B}}({\mathcal {S}}({\mathbb {R}}^d))\) the family of all bounded subsets of \({\mathcal {S}}({\mathbb {R}}^d\)). The topology of \({\mathcal {S}}'(\Gamma )\) can easily be described by a system of concrete seminorms which essentially is due to Schwartz [1, p. 301]; for this, note that the system of convex hulls of finite sets is cofinal in \({\text {CCS}}(\Gamma )\):

Lemma 5.1

[1, p. 301] Let \(\emptyset \ne \Gamma \subseteq {\mathbb {R}}^d\) be open and convex. For all \(K \in {\text {CCS}}(\Gamma )\) and \(B \in {\mathfrak {B}}({\mathcal {S}}({\mathbb {R}}^d))\) we have that

$$\begin{aligned} p_{K,B}(f) \mathrel {\mathop :}=\sup _{\eta \in K} \sup _{\varphi \in B} \left| \langle e^{-\eta \cdot x}f(x), \varphi (x) \rangle \right| < \infty , \qquad f \in {\mathcal {S}}'(\Gamma ). \end{aligned}$$

Moreover, the topology of \({\mathcal {S}}'(\Gamma )\) is generated by the system of seminorms \(\{p_{K,B} \, | \, K \in {\text {CCS}}(\Gamma ), B \in {\mathfrak {B}}({\mathcal {S}}({\mathbb {R}}^d))\}\).

We need to introduce some additional terminology. Given a non-empty compact convex subset K of \({\mathbb {R}}^d\), we define its supporting function as

$$\begin{aligned} h_K(x) =\max _{\eta \in K} x \cdot \eta , \qquad x \in {\mathbb {R}}^d. \end{aligned}$$

It is clear from the definition that \(h_K\) is subadditive and positive homogeneous of degree one. In particular, \(h_K\) is convex. Supporting functions have the following elementary properties.

Lemma 5.2

[12, Cor. 1.8.2 and Prop. 1.8.3] Let \(K_1\) and \(K_2\) be non-empty compact convex subsets of \({\mathbb {R}}^d\).

(a):

\(K_1 \subseteq K_2\) if and only if \(h_{K_1}(x) \le h_{K_2}(x)\) for all \(x \in {\mathbb {R}}^d\).

(b):

\(h_{K_1+K_2}(x) = h_{K_1}(x) + h_{K_2}(x)\) for all \(x \in {\mathbb {R}}^d\).

Example 5.3

For \(r > 0\) we have \(h_{{\overline{B}}(0,r)}(x) = r \left| x\right| \) for all \(x \in {\mathbb {R}}^d\), where \({\overline{B}}(0,r)\) denotes the closed ball in \({\mathbb {R}}^d\) centered at the origin with radius r. Next, let K be a non-empty compact convex subset of \({\mathbb {R}}^d\) and \(\varepsilon > 0\). We set \(K_\varepsilon = K + {\overline{B}}(0,\varepsilon )\). Lemma 5.2 and the above yield that \(h_{K_\varepsilon }(x) = h_K(x) + \varepsilon \left| x\right| \) for all \(x \in {\mathbb {R}}^d\).

Let \(\emptyset \ne \Gamma \subseteq {\mathbb {R}}^d\) be open and convex and let \((K_N)_{N \in {\mathbb {N}}} \subset {\text {CCS}}(\Gamma )\) be such that \(K_N \subseteq K_{N+1}\) for all \(N \in {\mathbb {N}}\) and \(\Gamma = \bigcup _{N} K_N\). Lemma 5.2 yields that \({\mathcal {W}} = (e^{h_{-K_N}})_{N \in {\mathbb {N}}}\) is an increasing weight system. We set \(C_\Gamma ({\mathbb {R}}^d) \mathrel {\mathop :}={\mathcal {W}}C({\mathbb {R}}^d)\). Clearly, the definition of \(C_\Gamma ({\mathbb {R}}^d)\) is independent of the chosen sequence \((K_N)_{N \in {\mathbb {N}}}\). The next result is the key observation of this article.

Proposition 5.4

Let \(\emptyset \ne \Gamma \subseteq {\mathbb {R}}^d\) be open and convex and let \(\psi \in {\mathcal {D}}({\mathbb {R}}^d)\). Then, the mappings

$$\begin{aligned} V_\psi :{\mathcal {S}}'(\Gamma ) \rightarrow C_\Gamma ({\mathbb {R}}^d_x) {\widehat{\otimes }}_\varepsilon {\mathcal {V}}_{{\text {pol}}}C({\mathbb {R}}^d_\xi ) \end{aligned}$$

and

$$\begin{aligned} V^*_\psi :C_\Gamma ({\mathbb {R}}^d_x) {\widehat{\otimes }}_\varepsilon {\mathcal {V}}_{{\text {pol}}}C({\mathbb {R}}^d_\xi ) \rightarrow {\mathcal {S}}'(\Gamma ) \end{aligned}$$

are well-defined and continuous.

We need some preparation for the proof of Proposition 5.4. Firstly, Lemma 2.1 implies that the topology of \(C_\Gamma ({\mathbb {R}}^d_x) {\widehat{\otimes }}_\varepsilon {\mathcal {V}}_{{\text {pol}}}C({\mathbb {R}}^d_\xi )\) is generated by the system of seminorms

$$\begin{aligned} \Vert f \Vert _{K,v} \mathrel {\mathop :}=\sup _{(x,\xi ) \in {\mathbb {R}}^{2d}} \left| f(x,\xi )\right| e^{h_{-K}(x)} v(\xi ) < \infty , \qquad K \in CCS(\Gamma ), v \in {\overline{V}}({\mathcal {V}}_{{\text {pol}}}). \end{aligned}$$

For \(k,n \in {\mathbb {N}}\) we write

$$\begin{aligned} \Vert \varphi \Vert _{{\mathcal {S}}^n_k} \mathrel {\mathop :}=\max _{\left| \alpha \right| \le n} \sup _{x \in {\mathbb {R}}^d} \left| \partial ^\alpha \varphi (x)\right| (1+\left| x\right| )^k, \qquad \varphi \in {\mathcal {S}}({\mathbb {R}}^d). \end{aligned}$$

The topology of \( {\mathcal {S}}({\mathbb {R}}^d)\) is generated by the system of seminorms \(\{ \Vert \,\cdot \, \Vert _{{\mathcal {S}}^n_k} \, | \, k,n \in {\mathbb {N}}\}\). We now give two technical lemmas.

Lemma 5.5

Let \(\psi \in {\mathcal {D}}({\mathbb {R}}^d)\), \(K \subset {\mathbb {R}}^d\) be compact, \(v \in {\overline{V}}({\mathcal {V}}_{{\text {pol}}})\) and \(\varepsilon > 0\). Then,

$$\begin{aligned} \{ e^{\eta \cdot (t-x)} \overline{M_\xi T_x\psi }(t) e^{-\varepsilon \left| x\right| }v(\xi ) \, | \, (x,\xi ) \in {\mathbb {R}}^{2d}, \eta \in K\} \in {\mathfrak {B}}({\mathcal {S}}({\mathbb {R}}^d_t)). \end{aligned}$$

Proof

Choose \(r > 0\) such that \({\text {supp}} \psi \subseteq {\overline{B}}(0,r)\) and \(R \ge 1\) such that \(K \subseteq {\overline{B}}(0,R)\). For all \(k,n \in {\mathbb {N}}\) we have that

$$\begin{aligned}&\sup _{(x,\xi ) \in {\mathbb {R}}^{2d}} \sup _{\eta \in K}e^{-\varepsilon \left| x\right| }v(\xi ) \Vert e^{\eta \cdot (t-x)} \overline{M_\xi T_x\psi }(t) \Vert _{{\mathcal {S}}^n_{k,t}} \le \sup _{(x,\xi ) \in {\mathbb {R}}^{2d}} \sup _{\eta \in K}e^{-\varepsilon \left| x\right| }v(\xi ) \cdot \\&\max _{\left| \alpha \right| \le n} \sup _{x \in {\mathbb {R}}^d} \sum _{\beta \le \alpha } \sum _{\gamma \le \beta } \left( {\begin{array}{c}\alpha \\ \beta \end{array}}\right) \left( {\begin{array}{c}\beta \\ \gamma \end{array}}\right) \left| \eta \right| ^{\left| \alpha \right| -\left| \beta \right| } e^{\eta \cdot (t-x)} (2\pi \left| \xi \right| )^{\left| \gamma \right| } \left| \partial ^{\beta -\gamma } {\overline{\psi }}(t-x)\right| (1+\left| t\right| )^k \\&\le e^{Rr} (8\pi R)^n \max _{\left| \alpha \right| \le n } \Vert \partial ^\alpha {\overline{\psi }} \Vert _{L^\infty } (1+r)^k \sup _{x \in {\mathbb {R}}^d} e^{-\varepsilon \left| x\right| }(1+\left| x\right| )^k \sup _{\xi \in {\mathbb {R}}^d}v(\xi ) (1+\left| \xi \right| )^n \\&< \infty . \end{aligned}$$

\(\square \)

Lemma 5.6

Let \(\psi \in {\mathcal {D}}({\mathbb {R}}^d)\) and \(\eta \in {\mathbb {R}}^d\). Then, for all \(k,n \in {\mathbb {N}}\) and \(\varphi \in {\mathcal {S}}({\mathbb {R}}^d)\),

$$\begin{aligned} \left| V_{{\overline{\psi }},t}( e^{-\eta \cdot t} \varphi (t))(x, -\xi )\right| \le \frac{C_{\eta ,k,n,\psi }e^{-\eta \cdot x} \Vert \varphi \Vert _{{\mathcal {S}}^n_k}}{(1+\left| x\right| )^k(1+\left| \xi \right| )^n}, \qquad (x,\xi ) \in {\mathbb {R}}^{2d}, \end{aligned}$$

where

$$\begin{aligned} C_{\eta ,k,n,\psi } = 4^n(1+\sqrt{d})^n \max \{1,\left| \eta \right| ^n\} \max _{\left| \alpha \right| \le n} \Vert \partial ^\alpha \psi \Vert _{L^\infty } \int _{{\text {supp}} \psi } e^{-\eta \cdot t} (1+\left| t\right| )^k \mathrm{d}t . \end{aligned}$$

In particular, \(\sup _{\eta \in K} C_{\eta ,k,n,\psi } < \infty \) for all \(K \subset {\mathbb {R}}^d\) compact.

Proof

We have that

$$\begin{aligned}&\left| V_{{\overline{\psi }},t}( e^{-\eta \cdot t} \varphi (t))(x, -\xi )\right| (1+\left| x\right| )^k (1 + \left| \xi \right| )^n \\&\le (1+ \sqrt{d})^n \max _{\left| \alpha \right| \le n}\left| \xi ^\alpha V_{{\overline{\psi }},t}( e^{-\eta \cdot t} \varphi (t))(x, -\xi )\right| (1+\left| x\right| )^k \\&\le (1+ \sqrt{d})^n (1+\left| x\right| )^k\max _{\left| \alpha \right| \le n} \sum _{\beta \le \alpha } \sum _{\gamma \le \beta } \left( {\begin{array}{c}\alpha \\ \beta \end{array}}\right) \left( {\begin{array}{c}\beta \\ \gamma \end{array}}\right) \cdot \\&\int _{{\mathbb {R}}^d} \left| \eta \right| ^{\left| \gamma \right| }e^{-\eta \cdot t} \left| \partial ^{\beta -\gamma }\varphi (t)\right| \left| \partial ^{\alpha -\beta }\psi (t-x)\right| \mathrm{d}t \\&\le (1+ \sqrt{d})^n (1+\left| x\right| )^k\max _{\left| \alpha \right| \le n} \sum _{\beta \le \alpha } \sum _{\gamma \le \beta } \left( {\begin{array}{c}\alpha \\ \beta \end{array}}\right) \left( {\begin{array}{c}\beta \\ \gamma \end{array}}\right) \cdot \\&\int _{{\text {supp}} \psi } \left| \eta \right| ^{\left| \gamma \right| }e^{-\eta \cdot (t+x)} \left| \partial ^{\beta -\gamma }\varphi (t+x)\right| \left| \partial ^{\alpha -\beta }\psi (t)\right| \mathrm{d}t \\&\le C_{\eta ,k,n,\psi }e^{-\eta \cdot x} \Vert \varphi \Vert _{{\mathcal {S}}^n_k}. \end{aligned}$$

\(\square \)

Proof of Proposition 5.4

(i) \(V_\psi :{\mathcal {S}}'(\Gamma ) \rightarrow C_\Gamma ({\mathbb {R}}^d_x) {\widehat{\otimes }}_\varepsilon {\mathcal {V}}_{{\text {pol}}}C({\mathbb {R}}^d_\xi )\) is well-defined and continuous: Let \(K \in {\text {CCS}}(\Gamma )\) and \(v \in {\overline{V}}({\mathcal {V}}_{{\text {pol}}})\) be arbitrary. Choose \(\varepsilon > 0\) so small that \(K_\varepsilon \in {\text {CCS}}(\Gamma )\) and pick, for \(x \in {\mathbb {R}}^d\) fixed, \(\eta _x \in K\) such that \(h_{-K}(x) \le (-\eta _x \cdot x) + 1\). Example 5.3 implies that, for all \(f \in {\mathcal {S}}'(\Gamma )\) and \((x,\xi ) \in {\mathbb {R}}^{2d}\),

$$\begin{aligned} \left| V_\psi f(x,\xi )\right| e^{h_{-K}(x)}v(\xi )&= \left| \langle e^{-(\eta _x - \varepsilon \frac{x}{\left| x\right| }) \cdot t} f(t), e^{(\eta _x - \varepsilon \frac{x}{\left| x\right| }) \cdot t} \overline{M_\xi T_x\psi }(t) \rangle \right| e^{h_{-K}(x)}v(\xi ) \\&\le e \left| \langle e^{-(\eta _x - \varepsilon \frac{x}{\left| x\right| }) \cdot t} f(t), e^{(\eta _x - \varepsilon \frac{x}{\left| x\right| }) \cdot (t-x)} \overline{M_\xi T_x\psi }(t) \rangle \right| e^{-\varepsilon \left| x\right| } v(\xi ) \\&\le ep_{K_\varepsilon ,B}(f), \end{aligned}$$

where

$$\begin{aligned} B = \{ e^{\tau \cdot (t-x)} \overline{M_\xi T_x\psi }(t) e^{-\varepsilon \left| x\right| }v(\xi ) \, | \, (x,\xi ) \in {\mathbb {R}}^{2d}, \tau \in K_\varepsilon \} \in {\mathfrak {B}}({\mathcal {S}}({\mathbb {R}}^d_t)) \end{aligned}$$

by Lemma 5.5.

(ii) \(V^*_\psi :C_\Gamma ({\mathbb {R}}^d_x) {\widehat{\otimes }}_\varepsilon {\mathcal {V}}_{{\text {pol}}}C({\mathbb {R}}^d_\xi ) \rightarrow {\mathcal {S}}'(\Gamma )\) is well-defined and continuous: We start by showing that \(V^*_\psi F \in {\mathcal {S}}'(\Gamma )\) for all \(F \in C_\Gamma ({\mathbb {R}}_x^d) {\widehat{\otimes }}_\varepsilon {\mathcal {V}}_{{\text {pol}}}C({\mathbb {R}}_\xi ^d)\). Lemma 5.6 implies that, for all \(\eta \in \Gamma \),

$$\begin{aligned} \langle f_\eta , \varphi \rangle = \int \int _{{\mathbb {R}}^{2d}} F(x,\xi ) V_{{\overline{\psi }},t}( e^{-\eta \cdot t} \varphi (t))(x, -\xi ) \,\mathrm{d}x \,\mathrm{d}\xi , \qquad \varphi \in {\mathcal {S}}({\mathbb {R}}^d), \end{aligned}$$

is a well-defined continous linear functional on \({\mathcal {S}}({\mathbb {R}}^d)\). Since \(e^{-\eta \cdot t}V^*_\psi F(t) = {f_\eta (t)}|_{{\mathcal {D}}({\mathbb {R}}^d)}\), we obtain that \(e^{-\eta \cdot t}V^*_\psi F(t) \in {\mathcal {S}}'({\mathbb {R}}^d)\) and that

$$\begin{aligned} \langle e^{-\eta \cdot t}V^*_\psi F(t), \varphi (t) \rangle = \int \int _{{\mathbb {R}}^{2d}} F(x,\xi ) V_{{\overline{\psi }},t}( e^{-\eta \cdot t} \varphi (t))(x, -\xi ) \,\mathrm{d}x \,\mathrm{d}\xi , \qquad \varphi \in {\mathcal {S}}({\mathbb {R}}^d). \end{aligned}$$

Next, we show that \(V^*_\psi \) is continuous. Let \(K \in {\text {CCS}}(\Gamma )\) and \(B \in {\mathfrak {B}}({\mathcal {S}}({\mathbb {R}}^d))\) be arbitrary. Choose \(\varepsilon > 0\) so small that \(K_\varepsilon \in {\text {CCS}}(\Gamma )\). Lemma 5.6 implies that there is \(v \in {\overline{V}}({\mathcal {V}}_{{\text {pol}}})\) such that

$$\begin{aligned} \left| V_{{\overline{\psi }}}(e^{-\eta \cdot t} \varphi (t))(x, -\xi )\right| \le e^{h_{-K}(x)} v(\xi ), \qquad (x,\xi ) \in {\mathbb {R}}^{2d}, \end{aligned}$$

for all \(\eta \in K\) and \(\varphi \in B\). Set \(w(\xi ) = v(\xi ) (1+ \left| \xi \right| )^{d+1} \in {\overline{V}}({\mathcal {V}}_{{\text {pol}}})\). Example 5.3 implies that, for all \(F \in C_\Gamma ({\mathbb {R}}_x^d) {\widehat{\otimes }}_\varepsilon {\mathcal {V}}_{{\text {pol}}}C({\mathbb {R}}_\xi ^d)\),

$$\begin{aligned} p_{K,B}(V^*_\psi F)&\le \sup _{\eta \in K} \sup _{\varphi \in B} \int \int _{{\mathbb {R}}^{2d}} \left| F(x,\xi )\right| \left| V_{{\overline{\psi }},t}( e^{-\eta \cdot t} \varphi (t))(x, -\xi )\right| \,\mathrm{d}x \,\mathrm{d}\xi \\&\le \int \int _{{\mathbb {R}}^{2d}} \left| F(x,\xi )\right| e^{h_{-K}(x)} v(\xi ) \,\mathrm{d}x \,\mathrm{d}\xi \le C \Vert F \Vert _{K_\varepsilon , w}, \end{aligned}$$

where

$$\begin{aligned} C = \int _{{\mathbb {R}}^d} e^{-\varepsilon \left| x\right| } dx \int _{{\mathbb {R}}^d} \frac{1}{(1+\left| \xi \right| )^{d+1}} \mathrm{d}\xi . \end{aligned}$$

\(\square \)

We now combine Theorem 4.1 with the results from Sect. 4 to study the space \({\mathcal {S}}'(\Gamma )\). Let \(\emptyset \ne \Gamma \subseteq {\mathbb {R}}^d\) be open and convex and let \((K_N)_{N \in {\mathbb {N}}} \subset {\text {CCS}}(\Gamma )\) be such that \(K_N \subseteq K_{N+1}\) for all \(N \in {\mathbb {N}}\) and \(\Gamma = \bigcup _{N} K_N\). For \({\mathcal {W}} = (e^{h_{-K_N}})_{N \in {\mathbb {N}}}\) we set \({\mathcal {B}}'_\Gamma ({\mathbb {R}}^d) \mathrel {\mathop :}={\mathcal {B}}'_{{\mathcal {W}}}({\mathbb {R}}^d)\) and \({\mathcal {O}}'_{C, \Gamma }({\mathbb {R}}^d) = {\mathcal {O}}'_{C, {\mathcal {W}}}({\mathbb {R}}^d)\). Clearly, these definitions are independent of the chosen sequence \((K_N)_{N \in {\mathbb {N}}}\). We are ready to state and prove our main theorem.

Theorem 5.7

Let \(\emptyset \ne \Gamma \subseteq {\mathbb {R}}^d\) be open and convex. Then, \({\mathcal {S}}'(\Gamma ) = {\mathcal {B}}'_\Gamma ({\mathbb {R}}^d) = {\mathcal {O}}'_{C, \Gamma }({\mathbb {R}}^d)\) as locally convex spaces and \({\mathcal {S}}'(\Gamma )\) is an ultrabornological (PLS)-space.

Proof

Let \((K_N)_{N \in {\mathbb {N}}} \subset {\text {CCS}}(\Gamma )\) be such that \(K_N \subseteq K_{N+1}\) for all \(N \in {\mathbb {N}}\) and \(\Gamma = \bigcup _{N} K_N\). Set \({\mathcal {W}} = (e^{h_{-K_N}})_{N \in {\mathbb {N}}}\). Lemma 5.2 and Example 5.3 imply that \({\mathcal {W}}\) satisfies (2.1), (2.2) and (2.3). Hence, in view of the reconstruction formula (3.1), the topological identity \({\mathcal {S}}'(\Gamma ) = {\mathcal {O}}'_{C, \Gamma }({\mathbb {R}}^d)\) follows from Proposition 4.1 and Proposition 5.4. Since \({\mathcal {W}}\) also satisfies (4.1) (again by Lemma 5.2 and Example 5.3), the other statements are a direct consequence of Theorem 4.2. \(\square \)