Skip to main content
Log in

Microstructures, hardening and tribological behaviors of tin matrix composites reinforced with SiC and Zn particles

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In order to strengthen pure tin and improve its dry sliding resistance, Sn/SiC and Sn/Zn composites were fabricated via a powder metallurgy route. Microstructure, hardness and pin-on-disk wear resistance of pure tin and the fabricated composites were compared to those of Sn–7.5Sb–3.5Cu Babbitt alloy. The dominant wear mechanism at different applied loads was determined by analyzing worn surfaces and wear debris in each case. The results showed that the hardening effect of Zn was much higher than that of SiC. The hardening role of Zn in the tin matrix was ascribed to the direct load transfer mechanism. Microscopic studies of the worn surfaces revealed that the pure tin was susceptible to surface fatigue wear and plowing damage, depending on the normal load applied during the wear test. In the case of Sn/SiC composite and the Babbitt alloy, delamination wear mechanism resulting from subsurface crack propagation controlled the wear rate. While the highest hardness and the lowest coefficient of friction were obtained for the Babbitt alloy, the Sn/Zn composite exhibited the highest wear resistance at a constant applied load, indicating the importance of asperity contact type in the wear process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sharma SC. Tribology in machine components. In: Menezes PL, Nosonovsky M, Ingole SP, Kailas SV, Lovell MR, editors. Tribology for Scientists and Engineers: from Basics to Advanced Concepts. New York: Springer; 2013. p. 821.

    Chapter  Google Scholar 

  2. Jenabali Jahromi SA, Moazami Goudarzi M, Nazarboland A. Failure analysis of GE-F9 gas turbine journal bearings. Iran J Sci Technol Trans B Eng. 2008;32(B1):61.

    Google Scholar 

  3. Harnoy A. Bearing Design in Machinery: Engineering Tribology and Lubrication. 1st ed. Boca Raton: CRC Press; 2002. 275.

    Book  Google Scholar 

  4. Kingsbury GR. Friction and wear of sliding bearing materials. In: Torren GE, editor. ASM Handbook, Volume 18, Friction, Lubrication, and Wear Technology. Geauga: ASM International; 1992. 741.

    Google Scholar 

  5. Dean RR, Evans CJ. Plain bearing materials: the role of tin. Tribol Int. 1976;9(3):101.

    Article  CAS  Google Scholar 

  6. Moazami Goudarzi M, Jenabali Jahromi SA, Nazarboland A. Investigation of characteristics of tin-based white metals as a bearing material. Mater Des. 2009;30(6):2283.

    Article  CAS  Google Scholar 

  7. Dong Q, Yin Z, Li H, Zhang X, Jiang D, Zhong N. Effects of Ag micro-addition on structure and mechanical properties of Sn–11Sb–6Cu Babbitt. Mater Sci Eng, A. 2018;722:225.

    Article  CAS  Google Scholar 

  8. Zhang D, Zhao F, Li Y, Li P, Zeng Q, Dong G. Study on tribological properties of multi-layer surface texture on Babbitt alloys surface. Appl Surf Sci. 2016;390:540.

    Article  CAS  Google Scholar 

  9. Ni Y, Li X, Dong G, Tong Z, Mei T. The combined effect of La and heat treatment on the tribological performances of tin-Babbitt alloy. Proc Inst Mech Eng Part J J Eng Tribol. 2019;233(7):1117.

    Article  CAS  Google Scholar 

  10. Zhang D, Ho JKL, Dong G, Zhang H, Hua M. Tribological properties of tin-based Babbitt bearing alloy with polyurethane coating under dry and starved lubrication conditions. Tribol Int. 2015;90:22.

    Article  CAS  Google Scholar 

  11. Alcover Junior PRC, Pukasiewicz AGM. Evaluation of microstructure, mechanical and tribological properties of a Babbitt alloy deposited by arc and flame spray processes. Tribol Int. 2019;131:148.

    Article  CAS  Google Scholar 

  12. Smart RF, Ellwood EC. Sintering of tin powder. Nature. 1958;181:833.

    Article  CAS  Google Scholar 

  13. Eastwood BJ, Robins DA. Some properties of tin prepared from tin powder by extrusion. Powder Metall. 1964;7(14):99.

    Article  CAS  Google Scholar 

  14. Ferguson BL, Roberts PR. Extrusion of metal powders. In: Eisen WB, Ferguson BL, German RM, Iacocca R, Lee PW, Madan D, Moyer K, Sanderow H, Trudel Y, editors. ASM Handbook, Volume 7, Powder Metal Technologies and Applications. Geauga: ASM International; 1998. 621.

    Google Scholar 

  15. Chawla N, Shen YL. Mechanical behavior of particle reinforced metal matrix composites. Adv Eng Mater. 2001;3(6):357.

    Article  CAS  Google Scholar 

  16. Dai LH, Ling Z, Bai YL. Size-dependent inelastic behavior of particle-reinforced metal-matrix composites. Compos Sci Technol. 2001;61(8):1057.

    Article  CAS  Google Scholar 

  17. Matucha KH. Materials Science and Technology, Structure and Properties of Nonferrous Alloys. Weinheim: Wiley; 1996. 36.

    Google Scholar 

  18. Moazami-Goudarzi M, Akhlaghi F. Wear behavior of Al 5252 alloy reinforced with micrometric and nanometric SiC particles. Tribol Int. 2016;102:28.

    Article  CAS  Google Scholar 

  19. Zum Gahr KH. Microstructure and Wear of Materials. Amsterdam: Elsevier; 1987. 80.

    Google Scholar 

  20. Menezes P, Nosonovsky M, Ingole SP, Kailas SV, Lovell MR. Tribology for Scientists and Engineers: From Basics to Advanced Concepts. 1st ed. New York: Springer; 2013. 71.

    Book  Google Scholar 

  21. Babu MVS, Krishna AR, Suman KNS. Review of journal bearing materials and current trends. Am J Mater Sci Technol. 2015;4(2):72.

    CAS  Google Scholar 

  22. Sturk RK, Whitney WJ. Fluid Film Bearing Materials. In: Wang QJ, Chung Y-W, editors. Encyclopedia of Tribology. Boston: Springer; 2013. 1200.

    Chapter  Google Scholar 

  23. Ludema KC. Friction, Wear, Lubrication: A Textbook in Tribology. 1st ed. Boca Raton: CRC Press; 1996. 150.

    Book  Google Scholar 

  24. Torrance AA. A new approach to the mechanics of abrasion. Wear. 1981;67(2):233.

    Article  Google Scholar 

  25. Suh NP. The delamination theory of wear. Wear. 1973;25(1):111.

    Article  CAS  Google Scholar 

  26. Rouhi M, Moazami-Goudarzi M, Ardestani M. Comparison of effect of SiC and MoS2 on wear behavior of Al matrix composites. Trans Nonferr Metal Soc. 2019;29(6):1169.

    Article  CAS  Google Scholar 

  27. Rowson DM, Wu YL. The sequential observation of the pitting process in discs. Wear. 1981;70(3):383.

    Article  CAS  Google Scholar 

  28. Stachowiak GW, Batchelor AW, Stachowiak GB. 10—Wear particle analysis. In: Stachowiak GW, Batchelor AW, Stachowiak GB, editors. Tribology Series. Amsterdam: Elsevier; 2004. 253.

    Google Scholar 

  29. Xu K, Luxmoore AR, Deravi F. Comparison of shape features for the classification of wear particles. Eng Appl Artif Intell. 1997;10(5):485.

    Article  CAS  Google Scholar 

  30. Chen LH, Rigney DA. Transfer during unlubricated sliding wear of selected metal systems. Wear. 1985;105(1):47.

    Article  CAS  Google Scholar 

  31. Arab M, Marashi SPH. Graphene nanoplatelet (GNP)-incorporated AZ31 magnesium nanocomposite: microstructural, mechanical and tribological properties. Tribol Lett. 2018;66(4):156.

    Article  Google Scholar 

  32. Czichos H. Chapter 1—introduction to friction and wear. In: Friedrich K, editor. Composite Materials Series. Amsterdam: Elsevier; 1986. 1.

    Google Scholar 

  33. Moazami-Goudarzi M, Nemati A. Tribological behavior of self lubricating Cu/MoS2 composites fabricated by powder metallurgy. Trans Nonferr Metal Soc. 2018;28(5):946.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Moazami-Goudarzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemi, F., Moazami-Goudarzi, M. & Najafi, H. Microstructures, hardening and tribological behaviors of tin matrix composites reinforced with SiC and Zn particles. Rare Met. 40, 2584–2592 (2021). https://doi.org/10.1007/s12598-020-01535-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01535-w

Keywords

Navigation