Skip to main content
Log in

Combined Use of Bacillus subtilis yb-114,246 and Bacillus licheniformis yb-214,245 Improves Body Growth Performance of Chinese Huainan Partridge Shank Chickens by Enhancing Intestinal Digestive Profiles

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

The aim of our study was to unveil the promoting function of compound Bacillus sp. in improving chicken digestion-induced higher body growth performance. Strains of Bacillus subtilis and B. licheniformis were jointly supplemented to the chick diet. Digestive enzyme activities in the digesta improved, development of intestinal villus enhanced, and duodenum and ileum villous height increased, while their crypt depth declined, and the cecum’s bacterial composition optimized after 56 days of supplementation. Bacterial composition at the phylum level changed significantly, more Firmicutes, Proteobacteria, Epsilonbacteraeota, and Tenericutes, but fewer Bacteroidetes were detected in cecum digesta in the compound Bacillus supplemented group. Bacterial composition diversity, which improves the abundances of metabolic genes through KEGG pathway classification, became more abundant. Results indicated that the Ruminococcaceae UCG-005, unclassified Ruminococcaceae, and unclassified Lachnospiraceae species are actively correlated with body growth, promoting higher final body weight. In conclusion, owing to digestive enzyme secretion, the development of intestinal villus was stimulated and gastrointestinal bacterial composition optimized, and two combined Bacillus sp. improved chicken body growth. Our findings show the promoting action of Bacillus subtilis and B. licheniformis on digestion, which can be an alternative to antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. National Research Council (US) Subcommittee on Environmental Stress (1981) Effect of environment on nutrient requirements of domestic animals. National Academies Press (US), Washington (DC), pp 213–225. https://doi.org/10.17226/4963

    Book  Google Scholar 

  2. Pedroso AA, Batal AB, Lee MD (2016) Effect of in ovo administration of an adult-derived microbiota on establishment of the intestinal microbiome in chickens. Am J Vet Res 77:514–526. https://doi.org/10.2460/ajvr.77.5.514

    Article  CAS  PubMed  Google Scholar 

  3. Mahmood T, Mirza MA, Nawaz H, Shahid M (2017) Effect of difference exogenous proteases on growth performance, nutrient digestibility, and carcass response in broiler chickens fed poultry by-product meal-based diets. Livest Sci 200:71–75. https://doi.org/10.1016/j.livsci.2017.04.009

    Article  Google Scholar 

  4. Adeola O, Cowieson AJ (2011) Board-invited review: opportunities and challenges in using exogenous enzymes to improve nonruminant animal production. J Anim Sci 89:3189–3218. https://doi.org/10.2527/jas.2010-3715

    Article  CAS  PubMed  Google Scholar 

  5. Rubio LA (2019) Possibilities of early life programming in broiler chickens via intestinal microbiota modulation. Poult Sci 98:695–706. https://doi.org/10.3382/ps/pey416

    Article  CAS  PubMed  Google Scholar 

  6. Wang L, Li L, Lv Y, Chen Q, Feng J, Zhao X (2018) Lactobacillus plantarum restores intestinal permeability disrupted by salmonella infection in newly-hatched chicks. Sci Rep-UK 8:2229. https://doi.org/10.1038/s41598-018-20752-z

    Article  CAS  Google Scholar 

  7. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME (2014) Expert consensus document. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11:506–514. https://doi.org/10.1038/nrgastro.2014.66

    Article  PubMed  Google Scholar 

  8. Fuller R (1989) Probiotics in man and animals. J Appl Bacteriol 66:365–378. https://doi.org/10.1111/j.1365-2672.1989.tb05105.x

    Article  CAS  PubMed  Google Scholar 

  9. Jeong JS, Kim IH (2014) Effect of bacillus subtilis C-3102 sporesas a probiotic feed supplement on growth performance, noxious gas emission, and intestinal microflora in broilers. Poult Sci 93:3097–3103. https://doi.org/10.3382/ps.2014-04086

    Article  CAS  PubMed  Google Scholar 

  10. Alexopoulos C, Georgoulakis IE, Tzivara A, Kyriakis CS, Govaris A, Kyriakis SC (2004) Field evaluation of the effect of a probiotic containing bacillus licheniformis and bacillus subtilis spores on the health status, performance, and carcass quality of grower and finisher pigs. J Vet Med A Physiol Pathol Clin Med 51:306–312. https://doi.org/10.1111/j.1439-0442.2004.00637.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bader J, Albin A, Stahl U (2012) Spore-forming bacteria and their utilization as probiotics. Benefic Microbes 3:67–75. https://doi.org/10.3920/BM2011.0039

    Article  CAS  Google Scholar 

  12. Bai K, Feng C, Jiang L, Zhang L, Zhang J, Zhang L, Wang T (2018) Dietary effects of bacillus subtilis fmbj on growth performance, small intestinal morphology, and its antioxidant capacity of broilers. Poult Sci 97:2312–2321. https://doi.org/10.3382/ps/pey116

    Article  CAS  PubMed  Google Scholar 

  13. Ullah A, Sun B, Wang F, Yin X, Xu B, Ali N, Mirani ZA, Mehmood A, Naveed M (2020) Isolation of selenium-resistant bacteria and advancement under enrichment conditions for selected probiotic bacillus subtilis (BSN313). J Food Biochem 44:e13227. https://doi.org/10.1111/jfbc.13227

    Article  CAS  PubMed  Google Scholar 

  14. Park I, Zimmerman NP, Smith AH, Rehberger TG, Lillehoj EP, Lillehoj HS (2020) Dietary supplementation with bacillus subtilis direct-fed microbials alters chicken intestinal metabolite levels. Front Vet Sci 7:123. https://doi.org/10.3389/fvets.2020.00123

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yang JJ, Qian K, Wu D, Zhang W, Wu YJ, Xu YY (2017) Effects of different proportions of two bacillus strains on the growth performance, small intestinal morphology, caecal microbiota and plasma biochemical profile of Chinese Huainan partridge shank chickens. J Integr Agric 16:1383–1392. https://doi.org/10.1016/S2095-3119(16)61510-1

    Article  Google Scholar 

  16. Yang JJ, Zhan K, Zhang MH (2020) Effects of the use of a combination of two bacillus species on performance, egg quality, small intestinal mucosal morphology, and cecal microbiota profile in aging laying hens. Probiotics Antimicrob Proteins 12:204–213. https://doi.org/10.1007/s12602-019-09532-x

    Article  CAS  PubMed  Google Scholar 

  17. Bernardeau M, Lehtinen MJ, Forssten SD, Nurminen P (2017) Importance of the gastrointestinal life cycle of Bacillus for probiotic functionality. J Food Sci Technol 54:2570–2584. https://doi.org/10.1007/s13197-017-2688-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Setlow P (1994) Mechanisms which contribute to the long-term survival of spores of bacillus species. Soc Appl Bacteriol Symp Ser 23:49S–60S. https://doi.org/10.1111/j.1365-2672.1994.tb04357.x

    Article  CAS  PubMed  Google Scholar 

  19. Mountzouris KC, Tsitrsikos P, Palamidi I, Arvaniti A, Mohnl M, Schatzmayr G, Fegeros K (2010) Effects of probiotic inclusion levels in broiler nutrition on growth performance, nutrient digestibility, plasma immunoglobulins, and cecal microflora composition. Poult Sci 89:58–67. https://doi.org/10.3382/ps.2009-00308

    Article  CAS  PubMed  Google Scholar 

  20. Bubnov RV, Babenko LP, Lazarenko LM, Mokrozub VV, Spivak MY (2018) Specific properties of probiotic strains: relevance and benefits for the host. EPMA J 9:205–223. https://doi.org/10.1007/s13167-018-0132-z

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bednarczyk M, Stadnicka K, Kozłowska I, Abiuso C, Tavaniello S, Dankowiakowska A, Sławińska A, Maiorano G (2016) Influence of different prebiotics and mode of their administration on broiler chicken performance. Animal 10:1271–1279. https://doi.org/10.1017/S1751731116000173

    Article  CAS  PubMed  Google Scholar 

  22. Linninge C, Xu J, Bahl MI, Ahrné S, Molin G (2019) Lactobacillus fermentum and lactobacillus plantarum increased gut microbiota diversity and functionality, and mitigated Enterobacteriaceae, in a mouse model. Benefic Microbes 10:413–424. https://doi.org/10.3920/BM2018.0074

    Article  CAS  Google Scholar 

  23. Chapman CM, Gibson GR, Rowland I (2011) Health benefits of probiotics: are mixtures more effective than single strains? Eur J Nutr 50:1–17. https://doi.org/10.1007/s00394-010-0166-z

    Article  CAS  PubMed  Google Scholar 

  24. Yang JJ, Zhang MH, Zhou Y (2019) Effects of selenium-enriched bacillus sp. compounds on growth performance, antioxidant status, and lipid parameters breast meat quality of Chinese Huainan partridge chicks in winter cold stress. Lipids Health Dis 18:63. https://doi.org/10.1186/s12944-019-1015-6

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hatab MH, Elsayed MA, Ibrahim NS (2016) Effect of some biological supplementation on productive performance, physiological and immunological response of layer chicks. J Radiat Res Appl Sci 9:185–192. https://doi.org/10.1016/j.jrras.2015.12.008

    Article  CAS  Google Scholar 

  26. Wang J, Zhang W, Wang S, Liu H, Zhang D, Wang Y, Ji H (2019) Swine-derived probiotic lactobacillus plantarum modulates porcine intestinal endogenous host defense peptide synthesis through tlr2/mapk/ap-1 signaling pathway. Front Immunol 10:2691. https://doi.org/10.3389/fimmu.2019.02691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. National Research Council (US) Committee for the update of the guide for the care and use of laboratory animals guide for the care and use of laboratory animals, eighth edn. The National Academies Press, Washington DC https://www.nap.edu/catalog/12910/guide-for-the-care-and-use-of-laboratory-animals-eighth. (2011) pp:112–116. doi: ArticleIdList/ArticleId[@IdType

  28. NRC (1994) nutrient Requirements of Poultry, 9th edn. The national academies press, Washington, DC, pp 313–316. https://doi.org/10.1016/0377-8401(95)90024-1

    Book  Google Scholar 

  29. Chankuang P, Linlawan A, Junda K, Kuditthalerd C, Suwanprateep T, Kovitvadhi A, Chundang P, Sanyathitiseree P, Yinharnmingmongkol C (2020) Comparison of rabbit, kitten and mammal milk replacer efficiencies in early weaning rabbits. Animals (Basel) 10:E1087. https://doi.org/10.3390/ani10061087

    Article  Google Scholar 

  30. Wang H, Ni X, Liu L, Zeng D, Lai J, Qing X, Li G, Pan K, Jing B (2017) Controlling of growth performance, lipid deposits and fatty acid composition of chicken meat through a probiotic, Lactobacillus johnsonii during subclinical Clostridium perfringens infection. Lipids Health Dis 16:38. https://doi.org/10.1186/s12944-017-0408-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cutting SM (2011) Bacillus probiotics. Food Microbiol 28:214–220. https://doi.org/10.1016/j.fm.2010.03.007

    Article  PubMed  Google Scholar 

  32. Askelson TE, Flores CA, Dunn-Horrocks SL, Dersjant-Li Y, Gibbs K, Awati A, Lee JT, Duong T (2018) Effects of direct-fed microorganisms and enzyme blend co-administration on intestinal bacteria in broilers fed diets with or without antibiotics. Poult Sci 97:54–63. https://doi.org/10.3382/ps/pex270

    Article  CAS  PubMed  Google Scholar 

  33. Barletta A (2010) Introduction: current market and expected developments. In enzymes in farm animal nutrition, 2nd ed.; Bedford, M.R., Partridge, G.G., Eds.; CAB international: Oxfordshire, UK pp:1–11. doi: https://doi.org/10.1079/9781845936747.0001

  34. Cartman ST, La Ragione RM, Woodward MJ (2008) Bacillus subtilis spores germinate in the chicken gastrointestinal tract. Appl Environ Microbiol 74:5254–5258. https://doi.org/10.1128/AEM.00580-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Keller D, Verbruggen S, Cash H, Farmer S, Venema K (2019) Spores of bacillus coagulans GBI-30, 6086 show high germination, survival and enzyme activity in a dynamic, computer-controlled in vitro model of the gastrointestinal tract. Benefic Microbes 10:77–87. https://doi.org/10.3920/BM2018.0037

    Article  CAS  Google Scholar 

  36. Hatanaka M, Nakamura Y, Maathuis AJ, Venema K, Murota I, Yamamoto N (2012) Influence of bacillus subtilis C-3102 on microbiota in a dynamic in vitro model of the gastrointestinal tract simulating human conditions. Benefic Microbes 3:229–236. https://doi.org/10.3920/BM2018.0037

    Article  CAS  Google Scholar 

  37. Leser TD, Knarreborg A, Worm J (2008) Germination and outgrowth of bacillus subtilis and bacillus licheniformis spores in the gastrointestinal tract of pigs. J Appl Microbiol 104:1025–1033. https://doi.org/10.1111/j.1365-2672.2007.03633.x

    Article  CAS  PubMed  Google Scholar 

  38. Sugiharto S, Isroli I, Yudiarti T, Widiastuti E (2018) The effect of supplementation of multistrain probiotic preparation in combination with vitamins and minerals to the basal diet on the growth performance, carcass traits, and physiological response of broilers. Vet World 11:240–247. https://doi.org/10.14202/vetworld.2018.240-247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ouwehand AC, Invernici MM, Furlaneto FAC, Messora MR (2018) Effectiveness of multistrain versus single-strain probiotics: current status and recommendations for the future. J Clin Gastroenterol 52:S35–S40. https://doi.org/10.1097/MCG.0000000000001052

    Article  CAS  PubMed  Google Scholar 

  40. Wu H, Xie S, Miao J, Li Y, Wang Z, Wang M, Yu Q (2020) Lactobacillus reuteri maintains intestinal epithelial regeneration and repairs damaged intestinal mucosa. Gut Microbes doi 11:997–1014. https://doi.org/10.1080/19490976.2020.1734423

    Article  Google Scholar 

  41. Biton M, Haber AL, Rogel N, Burgin G, Beyaz S, Schnell A, Ashenberg O, Su CW, Smillie C, Shekhar K, Chen Z, Wu C, Ordovas-Montanes J, Alvarez D, Herbst RH, Zhang M, Tirosh I, Dionne D, Nguyen LT, Xifaras ME, Shalek AK, von Andrian UH, Graham DB, Rozenblatt-Rosen O, Shi HN, Kuchroo V, Yilmaz OH, Regev A, Xavier RJ (2018) T helper cell cytokines modulate intestinal stem cell renewal and differentiation. Cell 175:1307–1320. https://doi.org/10.1016/j.cell.2018.10.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rao JN, Wang JY (2010) Regulation of gastrointestinal mucosal growth. Morgan & Claypool Life Sciences, San Rafael (CA), pp 6–17. https://doi.org/10.4199/C00028ED1V01Y201103ISP015

    Book  Google Scholar 

  43. Guo J, Dong X, Liu S, Tong J (2018) High-throughput sequencing reveals the effect of bacillus subtilis CGMCC 1.921 on the cecal microbiota and gene expression in ileum mucosa of laying hens. Poult Sci 97:2543–2556. https://doi.org/10.3382/ps/pey112

    Article  CAS  PubMed  Google Scholar 

  44. Giannenas I, Tsalie E, Triantafillou E, Hessenberger S, Teichmann K, Mohnl M, Tontis D (2014) Assessment of probiotics supplementation via feed or water on the growth performance, intestinal morphology and microflora of chickens after experimental infection with Eimeria acervulina, Eimeria maxima and Eimeria tenella. Avian Pathol 43:209–216. https://doi.org/10.1080/03079457.2014.899430

    Article  CAS  PubMed  Google Scholar 

  45. Mappley LJ, Tchorzewska MA, Cooley WA, Woodward MJ, La Ragione RM (2011) Lactobacilli antagonize the growth, motility, and adherence of Brachyspira pilosicoli: a potential intervention against avian intestinal spirochetosis. Appl Environ Microbiol 77:5402–5411. https://doi.org/10.1128/AEM.00185-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yang JJ, Qian K, Wang CL, Wu YJ (2018) Roles of probiotic lactobacilli inclusion in helping piglets establish healthy intestinal inter-environment for pathogen defense. Probiotics Antimicrob Proteins 10:243–250. https://doi.org/10.1007/s12602-017-9273-y

    Article  CAS  PubMed  Google Scholar 

  47. Pan F, Zhang L, Li M, Hu Y, Zeng B, Yuan H, Zhao L, Zhang C (2018) Predominant gut lactobacillus murinus strain mediates anti-inflammaging effects in calorie-restricted mice. Microbiome 6:54. https://doi.org/10.1186/s40168-018-0440-5

    Article  PubMed  PubMed Central  Google Scholar 

  48. Prince N, Oommen V, Bhaskar A (2018) Chicken intestine: an alternative to the mammalian intestine for physiology experimentation. Adv Physiol Educ 42:387–389. https://doi.org/10.1152/advan.00031.2018

    Article  PubMed  Google Scholar 

  49. Wu W, Zhang L, Xia B, Tang S, Liu L, Xie J, Zhang H (2020) Bioregional alterations in gut microbiome contribute to the plasma metabolomic changes in pigs fed with inulin. Microorganisms 8:e111. https://doi.org/10.3390/microorganisms8010111

    Article  CAS  PubMed  Google Scholar 

  50. Arnoriaga-Rodríguez M, Mayneris-Perxachs J, Burokas A, Pérez-Brocal V, Moya A, Portero-Otin M, Ricart W, Maldonado R, Fernández-Real JM (2020) Gut bacterial clpb-like gene function is associated with decreased body weight and a characteristic microbiota profile. Microbiome 8:59. https://doi.org/10.1186/s40168-020-00837-6

    Article  PubMed  PubMed Central  Google Scholar 

  51. Adalsteinsdottir SA, Magnusdottir OK, Halldorsson TI, Birgisdottir BE (2018) Towards an individualized nutrition treatment: role of the gastrointestinal microbiome in the interplay between diet and obesity. Curr Obes Rep 7:289–293. https://doi.org/10.1007/s13679-018-0321-z

    Article  PubMed  Google Scholar 

  52. Reyer H, Oster M, McCormack UM, Muráni E, Gardiner GE, Ponsuksili S, Lawlor PG, Wimmers K (2020) Host-microbiota interactions in ileum and caecum of pigs divergent in feed efficiency contribute to nutrient utilization. Microorganisms 8:e563. https://doi.org/10.3390/microorganisms8040563

    Article  CAS  PubMed  Google Scholar 

  53. McCormack UM, Curião T, Buzoianu SG, Prieto ML, Ryan T, Varley P, Crispie F, Magowan E, Metzler-Zebeli BU, Berry D, O'Sullivan O, Cotter PD, Gardiner GE, Lawlor PG (2017) Exploring a possible link between the intestinal microbiota and feed efficiency in pigs. Appl Environ Microbiol 83:e00380–e003817. https://doi.org/10.1128/AEM.00380-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Metzler-Zebeli BU, Siegerstetter SC, Magowan E, Lawlor PG, O’Connell NE, Zebeli Q (2019) Fecal microbiota transplant from highly deed efficient donors affects cecal physiology and microbiota in low- and high-feed efficient chickens. Front Microbiol 10:1576. https://doi.org/10.3389/fmicb.2019.01576

    Article  PubMed  PubMed Central  Google Scholar 

  55. Eeckhaut V, Machiels K, Perrier C, Romero C, Maes S, Flahou B, Steppe M, Haesebrouck F, Sas B, Ducatelle R, Vermeire S, Van Immerseel F (2013) Butyricicoccus pullicaecorum in inflammatory bowel disease. Gut 62:1745–1752. https://doi.org/10.1136/gutjnl-2012-303611

    Article  CAS  PubMed  Google Scholar 

  56. Zhang C, Zhang M, Pang X, Zhao Y, Wang L, Zhao L (2012) Structural resilience of the gut microbiota in adult mice under high-fat dietary perturbations. ISME J 6:1848–1857. https://doi.org/10.1038/ismej.2012.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hu L, Jin L, Xia D, Zhang Q, Ma L, Zheng H, Xu T, Chang S, Li X, Xun Z, Xu Y, Zhang C, Chen F, Wang S (2019) Nitrate ameliorates dextran sodium sulfate-induced colitis by regulating the homeostasis of the intestinal microbiota. Free Radic biol med. Doi: https://doi.org/10.1016/j.freeradbiomed.2019.12.002. Online ahead of print

  58. Shrestha N, Sleep SL, Cuffe JSM, Holland OJ, McAinch AJ, Dekker Nitert M, Hryciw DH (2020) Pregnancy and diet-related changes in the maternal gut microbiota following exposure to an elevated linoleic acid diet. Am J Physiol Endocrinol Metab 318:E276–E285. https://doi.org/10.1152/ajpendo.00265.2019

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was financially supported by the fund of National Key Research and Development Program of China (2016YFD0500703), Shandong Major Scientific and Technological Innovation Project (2019JZZY020611), and science and technology innovation team project of Anhui Academy of Agricultural Sciences (2020YL036).

Author information

Authors and Affiliations

Authors

Contributions

JY designed the study and isolated and cultured B. subtilis yb-114,246 and B. licheniformis yb-214,245. Conceptualization, ZW, FC, and DW were involved the funding acquisition. KH and JY conceive the idea. JW fed chicks and recorded the growth data. ZL was involved in technical direction. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Zhanyong Wei or Fu Chen.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. The experimental guidelines, the treatment, housing, and husbandry conditions conformed to Institutional Animal Care and Use Committee of China. The experimental protocols in this study including animal husbandry and slaughter were approved by the Institution of Animal Science and Welfare of Anhui Province (no. IASWAP2018111639).

Consent for Publication

All authors read and approved the final manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Huang, K., Wang, J. et al. Combined Use of Bacillus subtilis yb-114,246 and Bacillus licheniformis yb-214,245 Improves Body Growth Performance of Chinese Huainan Partridge Shank Chickens by Enhancing Intestinal Digestive Profiles. Probiotics & Antimicro. Prot. 13, 327–342 (2021). https://doi.org/10.1007/s12602-020-09691-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-020-09691-2

Keywords

Navigation