Skip to main content

Advertisement

Log in

Asymmetric Electron Energy Loss in Drift-Current Biased Graphene

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The electric drift-current bias was recently introduced as a new paradigm to break the Lorentz reciprocity in graphene. Here, we study the impact of the nonreciprocal response in the energy extracted from a beam of swift charges traveling in the vicinity of a graphene sheet with drifting electrons. It is demonstrated that the drift bias leads to an asymmetric electron-energy-loss spectrum that depends on the sign of the charge velocity. It is found that when the drift and electron beam velocities have comparable values but opposite signs, the energy loss is boosted resulting in a noncontact friction-type effect. In contrast, when the drift and electron beam velocities have the same sign, the energy loss is negligible. Furthermore, it is shown that different theoretical models of the drift-biased graphene conductivity yield distinct peaks for the energy-loss spectrum, and thereby electron beam spectroscopy can be used to test the validity of the different theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang Z, Fan S (2005) Optical circulators in two-dimensional magneto-optical photonic crystals. Opt Lett 30:1989

    PubMed  Google Scholar 

  2. Wang Z, Chong YD, Joannopoulos JD, Soljačić M (2008) One-way electromagnetic waveguide formed at the interface between plasmonic metal under a static magnetic field and a photonic crystal. Phys Rev Lett 100:012905

    Google Scholar 

  3. Haldane FDM, Raghu S (2008) Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys Rev Lett 100:012904

    Google Scholar 

  4. Raghu S, Haldane FDM (2008) Analogs of quantum-Hall-effect edge states in photonic crystals. Phys Rev A 78:033834

    Google Scholar 

  5. Lu L, Joannopoulos JD, Soljacič M (2014) Topological photonics. Nat Photonics 8:821–829

    CAS  Google Scholar 

  6. Morgado TA, Silveirinha MG (2018) Drift-induced unidirectional graphene plasmons. ACS Photonics 5:4253–4258

    CAS  Google Scholar 

  7. Prudêncio FR, Matos SA, Paiva CR (2015) Asymmetric band diagrams in photonic crystals with a spontaneous nonreciprocal response. Phys Rev A 91:063821

    Google Scholar 

  8. Prudêncio FR, Silveirinha MG (2016) Optical-isolation of circularly polarized light with a spontaneous magnetoelectric effect. Phys Rev A 93:043846

    Google Scholar 

  9. Silveirinha MG (2017) PTD symmetry protected scattering anomaly in optics. Phys Rev B 95:035153

    Google Scholar 

  10. Caloz C, Alù A, Tretyakov S, Sounas D, Achouri K, Deck-Léger ZL (2018) Electromagnetic nonreciprocity. Phys Rev Applied 10:047001

    CAS  Google Scholar 

  11. Silveirinha MG (2019) Time-reversal symmetry in antenna theory. Symmetry 11:486

    CAS  Google Scholar 

  12. Gallo K, Assanto G, Parameswaran KR, Fejer MM (2001) All optical diode in a periodically poled lithium niobate waveguide. Appl Phys Lett 79:314–316

    CAS  Google Scholar 

  13. Soljacič M, Luo C, Joannopoulos JD, Fan S (2003) Nonlinear photonic crystal microdevices for optical integration. Opt Lett 28:637–639

    PubMed  Google Scholar 

  14. Fleury R, Sounas DL, Sieck CF, Haberman MR, Alù A (2014) Sound isolation and giant linear nonreciprocity in a compact acoustic circulator. Science 343:516–519

    CAS  PubMed  Google Scholar 

  15. Hafezi M, Rabl P (2012) Optomechanically induced non-reciprocity in microring resonators. Opt Express 20:7672

    PubMed  Google Scholar 

  16. Lannebere S, Silveirinha MG (2016) Wave instabilities and unidirectional light flow in a cavity with rotating walls. Phys Rev A 94:033810

    Google Scholar 

  17. Kodera T, Sounas DL, Caloz C (2011) Artificial Faraday rotation using a ring metamaterial structure without static magnetic field. Appl Phys Lett 99:031114

    Google Scholar 

  18. Wang Z, Wang Z, Wang J, Zhang B, Huangfu J, Joannopoulos JD, Soljacič M, Ran L (2012) Gyrotropic response in absence of a bias field. Proc Natl Acad Sci U S A 109:13194–13197

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Sounas DL, Alù A (2017) Non-reciprocal photonics based on time modulation. Nat Photonics 11:774–783

    CAS  Google Scholar 

  20. Estep NA, Sounas DL, Soric J, Alù A (2014) Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops. Nat Phys 10:923–927

    CAS  Google Scholar 

  21. Deck-Léger Z-L, Chamanara N, Skorobogatiy M, Silveirinha MG, Caloz C (2019) Uniform-velocity spacetime crystals. Advanced Photonics 1:056002

    Google Scholar 

  22. P. A. Huidobro, E. Galiffi, S. Guenneau, R.V. Craster, J.B. Pendry, “Fresnel drag in space-time modulated metamaterials”, PNAS (2019), https://doi.org/10.1073/pnas.1915027116

  23. D. S. Borgnia, T. V. Phan, L. S. Levitov, “Quasi-relativistic doppler effect and non-reciprocal plasmons in graphene”, arXiv: 478 1512.09044 (2015)

  24. Sabbaghi M, Lee H-W, Stauber T, Kim KS (2015) Drift-induced modifications to the dynamical polarization of graphene. Phys Rev B 92:195429

    Google Scholar 

  25. B. Van Duppen, A. Tomadin, A. N. Grigorenko, M. Polini, “Current-induced birefrigent absorption and non-reciprocal plasmons in graphene”, 2D Mater. 3, 015011 (2016)

  26. Wenger T, Viola G, Kinaret J, Fogelström M, Tassin P (2018) Current-controlled light scattering and asymmetric plasmon propagation in graphene. Phys Rev B 97:085419

    CAS  Google Scholar 

  27. Morgado TA, Silveirinha MG (2017) Negative Landau damping in bilayer graphene. Phys Rev Lett 119:133901

    PubMed  Google Scholar 

  28. Correas-Serrano D, Gomez-Diaz JS (2019) Nonreciprocal and collimated surface plasmons in drift-biased graphene metasurfaces. Phys Rev B 100:081410

    CAS  Google Scholar 

  29. T. A. Morgado, M. G. Silveirinha, Reply to comment on “Negative Landau Damping in Bilayer Graphene”, Phys. Rev. Lett. 123, 219402, (2019). (see also arxiv.org/abs/1812.09103)

  30. Silveirinha MG (2014) Optical instabilities and spontaneous light emission by polarizable moving matter. Phys Rev X 4:031013

    Google Scholar 

  31. Fizeau H (1851) Sur les hypothèses relatives à l’éther lumineaux. Comptes Rendus 33:349–355

    Google Scholar 

  32. Gonçalves PAD, Peres NMR (2016) An introduction to graphene plasmonics. World Scientific, Hackensack, NJ

    Google Scholar 

  33. Ferguson B, Zhang X-C (2002) Materials for terahertz science and technology. Nat Mater 1:26–33

    CAS  PubMed  Google Scholar 

  34. Hillier J, Baker RF (1944) Microanalysis by means of electrons. J Appl Phys 15:663–675

    CAS  Google Scholar 

  35. C. J. Powell, J. B. Swan, “Origin of the characteristic electron energy losses in aluminum”, Phys. Rev. 115, 869 (1959)

  36. de Abajo FJG (2010) Optical excitations in electron microscopy. Rev Mod Phys 82:209–275

    Google Scholar 

  37. Polman A, Kociak M, de Abajo FJG (2019) Electron-beam spectroscopy for nanophotonics. Nat Mater 18:1158–1171

    CAS  PubMed  Google Scholar 

  38. Rocca M (1995) Low-energy EELS investigation of surface electronic excitations on metals. Surf Sci Rep 22:1–71

    CAS  Google Scholar 

  39. Diaconescu B, Pohl K, Vattuone L, Savio L, Hofmann P, Silkin VM, Pitarke JM, Chulkov EV, Echenique PM, Farías D, Rocca M (2007) Low-energy acoustic plasmons at metal surfaces. Nature 448:57–59

    CAS  PubMed  Google Scholar 

  40. Hachtel JA, Lupini AR, Idrobo JC (2018) Exploring the capabilities of monochromated electron energy loss spectroscopy in the infrared regime. Sci Rep 8:5637

    PubMed  PubMed Central  Google Scholar 

  41. Cherenkov PA (1934) Visible emission of clean liquids by action of γ radiation. Dokl Akad Nauk SSSR 2:451

    CAS  Google Scholar 

  42. Veselago VG (1968) The electrodynamics of substances with simultaneously negative values εof and μ. Sov Phys Usp 10:509

    Google Scholar 

  43. So J-K, Won J-H, Sattorov MA, Bak S-H, Jang K-H, Park G-S, Kim DS, Garcia-Vidal FJ (2010) Cherenkov radiation in metallic metamaterials. Appl Phys Lett 97:151107

    Google Scholar 

  44. Fernandes DE, Maslovski SI, Silveirinha MG (2012) Cherenkov emission in a nanowire material. Phys Rev B 85:155107

    Google Scholar 

  45. Morgado TA, Fernandes DE, Silveirinha MG (2015) Analytical solution for the stopping power of the Cherenkov radiation in a uniaxial nanowire material. Photonics 2:702–718

    Google Scholar 

  46. Vorobev VV, Tyukhtin AV (2012) Nondivergent Cherenkov radiation in a wire metamaterial. Phys Rev Lett 108:184801

    PubMed  Google Scholar 

  47. Liu F, Xiao L, Ye Y, Wang M, Cui K, Feng X, Zhang W, Huang Y (2017) On-chip integrated Cherenkov radiation emitter eliminating the electron velocity threshold. Nat Photonics 11:289–292

    Google Scholar 

  48. Silveirinha MG (2017) Low energy Cherenkov glow. Nat Photonics 11:269–271

    CAS  Google Scholar 

  49. Prudêncio FR, Silveirinha MG (2018) Asymmetric Cherenkov emission in a topological plasmonic waveguide. Phys Rev B 98:115136

    Google Scholar 

  50. Lin X, Yang Y, Rivera N, López JJ, Shen Y, Kaminer I, Chen H, Zhang B, Joannopoulos JD, Soljacič M (2017) All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene-boron nitride heterostructures. PNAS 114:6717–6721

    CAS  PubMed  Google Scholar 

  51. Koppens FHL, Chang DE, García de Abajo FJ (2011) Graphene plasmonics: a platform for strong light-matter interactions. Nano Lett 11(8):3370

    CAS  PubMed  Google Scholar 

  52. Shishir RS, Ferry DK (2009) Velocity saturation in intrinsic graphene. J Phys Condens Matter 21:344201

    CAS  PubMed  Google Scholar 

  53. Dorgan VE, Bae M-H, Pop E (2010) Mobility and saturation velocity in graphene on SiO2. Appl Phys Lett 97:082112

    Google Scholar 

  54. J. B. Pendry, “Shearing the vacuum-quantum friction”, J. Phys.: Condens. Matter 9, 10301 (1997)

  55. Volokitin AI, Persson BNJ (2007) Near-field radiative heat transfer and noncontact friction. Rev Mod Phys 79:1291–1329

    CAS  Google Scholar 

  56. Silveirinha MG (2013) Quantization of the electromagnetic field in non-dispersive polarizable moving media above the Cherenkov threshold. Phys Rev A 88:043846

    Google Scholar 

  57. M. G. Silveirinha, “Theory of quantum friction”, New J. Phys. 16, 063011 (2014)

Download references

Funding

This work is supported in part by the IET under the A F Harvey Engineering Research Prize 2018 and by Fundação para Ciência e a Tecnologia (FCT) under project PTDC/EEITEL/4543/2014 and UIDB/EEA/50008/2020. F. R. Prudêncio received financial support by FCT under the post-doctoral fellowship SFRH/BPD/108823/2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filipa R. Prudêncio.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The function G(z) in Eq. (6c) is given by:

$$ G(z)=z\;\mathrm{sq}\left(z-1\right)\mathrm{sq}\left(z+1\right)-\left[\ln \left(\left(z+\mathrm{sq}\left(z-1\right)\mathrm{sq}\left(z+1\right)\right){e}^{i{\theta}_0}\right)-i{\theta}_0\right] $$
(10)

where ln represents the standard logarithm function with a branch cut in the negative real axis and θ0 =  − π/4. The function sq(ω) with ω = ω'  + iω'' is determined by

$$ \mathrm{sq}\left(\omega \right)=\Big\{{\displaystyle \begin{array}{c}-\sqrt{\omega },\kern1.25em \mathrm{if}\kern0.5em {\omega}^{\hbox{'}}<0\kern0.15em \mathrm{and}\kern0.15em {\omega}^{\hbox{'}\hbox{'}}<0\\ {}\sqrt{\omega },\kern2em \mathrm{otherwise}\end{array}}\operatorname{} $$
(11)

where √ is the standard square root function with a branch cut in the negative real axis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prudêncio, F.R., Silveirinha, M.G. Asymmetric Electron Energy Loss in Drift-Current Biased Graphene. Plasmonics 16, 19–26 (2021). https://doi.org/10.1007/s11468-020-01215-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01215-6

Keywords

Navigation