Skip to main content
Log in

Oxidation of Nickel-Coated AISI 430 Alloy: Effect of Pre-oxidation and Fe0.5Ni0.5 Inter-diffusion Layer

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation behavior of nickel (Ni)-coated AISI 430 alloy was investigated at 800 °C in moisture-saturated (~ 3% H2O) air. Effects of pre-oxidation of AISI 430 in air and inter-diffusion layer (Fe0.5Ni0.5) of Ni-coated AISI 430, in dilute hydrogen (Ar–3%H2) at 800 °C, on the oxidation behavior were also studied. Microstructure, elemental chemistry, and compound/oxide formation across the reaction zones/oxide layer were analyzed by scanning electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction techniques. Multilayered oxides/reaction zones were found for all the samples. Ni-coated AISI 430 exhibits the lowest chromium diffusion into the oxide scale from the AISI 430/oxide scale interface. Pre-oxidation of AISI 430 and inter-diffusion of Ni-coated AISI 430 show excessive chromium diffusion into the reaction zone/oxide scale and interfacial porosity.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. W. Z. Zhu, Development of interconnect materials for solid oxide fuel cells. Mater. Sci. Eng. A. 348, 227–243 (2003).

    Article  Google Scholar 

  2. Z. Yang, Recent advances in metallic interconnects for solid oxide fuel cells. Inter. Mater. Rev. 53, 39–54 (2008).

    Article  CAS  Google Scholar 

  3. H. Ebrahimifar and M. Zandrahimi, Influence of oxide scale thickness on electrical conductivity of coated AISI 430 steel for use as interconnect in solid oxide fuel cells. Ionics 18, 615–624 (2012).

    Article  CAS  Google Scholar 

  4. M. K. Mahapatra and P. Singh, Fuel cells: energy conversion technology, in Future Energy, ed. T. M. Letcher (Elsevier, London, 2013), pp. 511–547.

    Google Scholar 

  5. P. Alnegren, M. Sattari, J. Froitzheim, and J. E. Svensson, Degradation of ferritic stainless steels under conditions used for solid oxide fuel cells and electrolyzers at varying oxygen pressures. Corr. Sci. 110, 200–212 (2016).

    Article  CAS  Google Scholar 

  6. S. P. Jiang and X. Chen, Chromium deposition and poisoning of cathodes of solid oxide fuel cells: A review. Inter. J. Hydrog. Energy. 39, 505–531 (2014).

    Article  CAS  Google Scholar 

  7. N. Shaigan, W. Qu, D. G. Ivey, and W. Chen, A review of recent progress in coatings, surface modifications and alloy developments for solid oxide fuel cell ferritic stainless steel interconnects. J. Power Sources. 195, 1529–1542 (2010).

    Article  CAS  Google Scholar 

  8. M. Stanislowski, J. Froitzheim, L. Niewolak, et al., Reduction of chromium vaporization from SOFC interconnectors by highly effective coatings. J. Power Sources. 164, 578–589 (2007).

    Article  CAS  Google Scholar 

  9. S. Fontana, R. Amendol, S. Chevalier, et al., Metallic interconnects for SOFC: Characterization of corrosion resistance and conductivity evaluation at operating temperature of differently coated alloys. J. Power Sour. 171, 652–662 (2007).

    Article  CAS  Google Scholar 

  10. S.-H. Kim, J.-Y. Huh, J.-H. Jun, and J. Favergeon, Thin elemental coatings of yttrium, cobalt, and yttrium/cobalt on ferritic stainless steel for SOFC interconnect applications. Cur. Appl. Phys. 10, S86–S90 (2010).

    Article  Google Scholar 

  11. G. A. Ludwig, M. A. Korb, D. A. S. Lima, et al., Protective coatings for AISI430 stainless steel at high temperatures using perovskite oxides La0.6Sr0.4CoO3 on spinel type oxide NiFe2O4. Ceram. Int. 141, 14561–14573 (2015).

    Article  Google Scholar 

  12. J.-J. Choi, J. Ryu, B.-D. Hahn, et al., Ni-containing conducting ceramic as an oxidation protective coating on metallic interconnects by aerosol deposition. J. Am. Ceram. Soc. 93, 1614–1618 (2010).

    CAS  Google Scholar 

  13. C. S. Ni, D. F. Zhang, C. Y. Ni, and Z. M. Wang, Ruddlesdene Popper nickelate as coating for chromia-forming stainless steel. Int. J. Hydrog. Energy. 39, 13314–13319 (2014).

    Article  CAS  Google Scholar 

  14. S. Lee, J. Hong, H. Kim, et al., Highly dense Mn-Co spinel coating for protection of metallic interconnect of solid oxide fuel cells. J. Electrochem. Soc. 161, F1389–F1394 (2014).

    Article  CAS  Google Scholar 

  15. Z. Yang, G. Xia, S. P. Simner, and J. W. Stevenson, Thermal growth and performance of manganese cobaltite spinel protection layers on ferritic stainless steel SOFC interconnects. J. Electrochem. Soc. 152, 1896–1901 (2005).

    Article  Google Scholar 

  16. Z. Ranjbar-Nouri, M. Soltanieh, and S. Rastegari, Applying the protective CuMn2O4 spinel coating on AISI-430 ferritic stainless steel used as solid oxide fuel cell interconnects. Surf. Coat. Technol. 334, 365–372 (2018).

    Article  CAS  Google Scholar 

  17. R. Irankhah, B. Raissi, A. Maghsoudipour, A. Irankhah, and S. Ghashghai, NiFe2O4 spinel protection coating for high-temperature solid oxide fuel cell interconnect application. J. Mater. Eng. Perform. 25, 1515–1525 (2016).

    Article  CAS  Google Scholar 

  18. S. N. Hosseini, F. Karimzadeh, M. H. Enayati, and N. M. Sammes, Oxidation and electrical behavior of CuFe2O4 spinel coated Crofer 22 APU stainless steel for SOFC interconnect application. Solid State Ionics. 289, 95–105 (2016).

    Article  CAS  Google Scholar 

  19. S. Joshi, C. Silva, P. Wang, Y. Mozharivskyj, and A. Petric, Copper-magnesium-manganese spinel coatings for solid oxide fuel cell interconnects. J. Electrochem. Soc. 161, F233–F238 (2014).

    Article  CAS  Google Scholar 

  20. J. G. Grolig, P. Alnegren, J. Froitzheim, and J. E. Svensson, Copper iron conversion coating for solid oxide fuel cell interconnects. J. Power Sour. 297, 534–539 (2015).

    Article  CAS  Google Scholar 

  21. S. Geng, Q. Zhao, Y. Li, et al., Sputtered MnCu metallic coating on ferritic stainless steel for solid oxide fuel cell interconnects application. Int. J. Hydrog. Energy 42, 10298–10307 (2017).

    Article  CAS  Google Scholar 

  22. H. Ebrahimifar and M. Zandrahimi, Oxidation and electrical behavior of Mn-Co-coated Crofer 22 APU steel produced by a pack cementation method for SOFC interconnect applications. Oxid. Met. 84, 129–149 (2015).

    Article  CAS  Google Scholar 

  23. P. F. You, X. Zhang, H. L. Zhang, H. J. Liu, and C. L. Zeng, Effect of CeO2 on oxidation and electrical behaviors of ferritic stainless steel interconnects with Ni-Fe coatings. Int. J. Hydrog. Energy. 43, 7492–7500 (2018).

    Article  CAS  Google Scholar 

  24. M. V. Glazoff, S. N. Rashkeev, and J. S. Herring, Controlling chromium vaporization from interconnects with nickel coatings in solid oxide devices. Int. J. Hydrog. Energy 39, 15031–15038 (2014).

    Article  CAS  Google Scholar 

  25. S. Geng, Q. Wang, W. Wang, S. Zhu, and F. Wang, Sputtered Ni coating on ferritic stainless steel for solid oxide fuel cell interconnect application. Int. J. Hydrog. Energy 37, 916–920 (2012).

    Article  CAS  Google Scholar 

  26. K. A. Nielsen, A. R. Dinesen, L. Korcakova, et al., Testing of Ni-plated ferritic steel interconnect in SOFC stacks. Fuel Cells 6, 2006 (100–106).

    Article  CAS  Google Scholar 

  27. M. K. King and M. K. Mahapatra, Microstructure of electrodeposited nickel: role of additives. J. Mater. Eng. Perf. (under review).

  28. K. Wang, Y. Liu, and J. W. Fergus, Interactions between SOFC interconnect coating materials and chromia. J. Amer. Ceram. Soc. 94, 4490–4495 (2011).

    Article  CAS  Google Scholar 

  29. Ho CY, T.K. Chu TK. Electrical resistivity and thermal conductivity of nine selected AISI steel. Cindas Report 45 (1977).

  30. M. K. King and M. K. Mahapatra, Oxidation of electroless Ni–P coated AISI 430 alloy and effect of pre-reduction. SN Appl. Sci. 2, 716 (2020).

    Article  CAS  Google Scholar 

  31. S. J. Hearne and J. A. Floro, Mechanisms inducing compressive stress during electrodeposition of Ni. J. Appl. Phys. 97, 014901 (2005).

    Article  Google Scholar 

  32. M. K. King and M. K. Mahapatra, Corrosion of nickel and nickel-phosphorous coated AISI 430 in dry (Ar-3%H2) and humid hydrogen (Ar-3%H2 -3% H2O) atmosphere. J. Mater. Res. (accepted).

  33. D. Connetable, M. David, A. Prillieux, D. Young, and D. Monceau, Impact of the clusterization on the solubility of oxygen and vacancy concentration in nickel: A multi-scale approach. J. Alloys Comp. 708, 1063–1072 (2017).

    Article  CAS  Google Scholar 

  34. K. Hirano, M. Cohen, and B. L. Averbach, Diffusion of nickel into iron. Acta Metall. 9, 440–445 (1961).

    Article  CAS  Google Scholar 

  35. C. F. Heuer, Diffusion of iron and cobalt in nickel single crystals. Ph.D. thesis, Missouri University of Science and Technology (1969).

  36. A. Atkinson, A quantitative demonstration of the grain boundary diffusion mechanism for the oxidation of metals. Philos. Mag. A 45, 823–833 (1982).

    Article  CAS  Google Scholar 

  37. S. Perusin, B. Viguier, D. Monceau, L. Ressier, and E. Andrieu, Injection of vacancies at metal grain boundaries during the oxidation of nickel. Acta Mater. 52, 5375–5380 (2004).

    Article  CAS  Google Scholar 

  38. E. Essuman, G. H. Meier, J. Żurek, M. Hänsel, and W. J. Quadakkers, The effect of water vapor on selective oxidation of Fe-Cr alloy. Oxi. Metals. 69, 143–162 (2008).

    Article  CAS  Google Scholar 

  39. R. E. Lobnig, Diffusion of cations in chromia layers grown on iron-base alloys. Oxid Metals. 37, 81–93 (1992).

    Article  CAS  Google Scholar 

  40. M. A. Rhamdhani, P. C. Hayes, and E. Jak, Subsolidus phase equilibria of the Fe-Ni-O System. Metal. Mater. Trans. B 39, 690–701 (2008).

    Article  Google Scholar 

  41. A. Col, V. Parry, and C. Pascal, Oxidation of Fe-18Cr-8Ni austenitic stainless steel at 850°C in O2: Microstructure evolution during breakaway oxidation. Corr. Sci. 114, 17–27 (2017).

    Article  CAS  Google Scholar 

  42. L. Latu-Romaina, Y. Parsa, S. Mathieu, et al., Towards the growth of stoichiometric chromia on pure chromium by the control of temperature and oxygen partial pressure. Corr. Sci. 126, 238–246 (2017).

    Article  Google Scholar 

  43. J. D. Tucker, R. Najafabadi, T. R. Allen, and D. Morgan, Ab initio-based diffusion theory and tracer diffusion in Ni–Cr and Ni–Fe alloys. J. Nucl. Mater. 405, 216 (2010).

    Article  CAS  Google Scholar 

  44. N. Birks, G. M. Meier, and F. S. Pettit, Introduction to high temperature oxidation of metals, 2nd ed, (Cambridge University Press, Cambridge, 2006).

    Book  Google Scholar 

Download references

Acknowledgements

US Department of Energy funded the research under the Grant No. DE-FE 0023385. One author (MK) is grateful to NASA Alabama Space Grant Consortium (ASGC) for the financial support to pursue Ph.D. study (Grant No. NNX15AJ18H).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj K. Mahapatra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 629 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

King, M.K., Mahapatra, M.K. Oxidation of Nickel-Coated AISI 430 Alloy: Effect of Pre-oxidation and Fe0.5Ni0.5 Inter-diffusion Layer. Oxid Met 94, 359–381 (2020). https://doi.org/10.1007/s11085-020-09996-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-020-09996-1

Keywords

Navigation