Skip to main content
Log in

Effect of Pulse Frequency on the Transport Phenomena and Crystal Growth Behavior in Quasi-Continuous-Wave Laser Powder Deposition of Single-Crystal Superalloy

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The effect of pulse frequency on the transport phenomena and crystal growth behavior in the quasi-continuous-wave laser powder deposition process of single-crystal superalloy were studied through an improved three-dimensional mathematical model and experiments. Laser powder deposition experiments with single-crystal superalloy were conducted to verify the computational results and analyze the crystal growth behavior. Results showed that the laser mode has a predominant effect on the transport phenomena and the associated crystal growth behavior. The increase of pulse frequency weakens the fluctuation motion of the molten pool and shallows the solidification interface. Under the given processing parameters, the molten pool size decreases quickly with the increase of pulse frequency from 0 to 15 Hz, and then gradually tends to a steady state in the range of 15 to 35 Hz. When the pulse frequency exceeds 35 Hz, the molten pool does not disappear completely during the laser-off period of a pulse cycle. With the increase of pulse frequency from 0 to 35 Hz, the peak temperature of molten pool decreases from 2567.5 K to 2324.7 K, while the peak normal thermal gradient at the solidification interface increases from 2.24 × 106 K/m to 1.01 × 107 K/m. The fast solidification speed driven by the contraction speed of molten pool during the laser-off period of quasi-continuous-wave laser powder deposition process refines the trunk size of columnar dendrites and facilitates the formation of shrinkage cavities and chainlike carbides. Due to the significant increase of thermal gradient and solidification speed, the quasi-continuous-wave laser powder deposition process of single-crystal superalloy features the columnar dendrites with a better epitaxial growth ability, and acts as an effective method to expand the repair-processing window of single-crystal components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. [1] F.I. Versnyder and M. Shank: Mater. Sci. Eng., 1970, vol. 6, pp. 213-47.

    Article  CAS  Google Scholar 

  2. [2] M.C. Flemings, Metall. Trans., 1974, vol. 5, pp. 2121-34.

    Article  CAS  Google Scholar 

  3. [3] T. Pollock and W. Murphy: Metall. Mater. Trans. A, 1996, vol. 27A, pp.1081-94.

    Article  Google Scholar 

  4. [4] S. Babu, S. David, J. Park and J. Vitek: Sci. Technol. Weld. Join., 2004, vol. 9, pp. 1-12.

    Article  CAS  Google Scholar 

  5. [5] R. Vilar and A. Almeida: J. Laser Appl., 2015, vol. 27, pp. S17004.

    Article  Google Scholar 

  6. [6] S. Kaierle, L. Overmeyer, I. Alfred, B. Rottwinkel, J. Hermsdorf, V. Wesling and N. Weidlich: CIRP J. Manuf. Sci. Technol., 2017. vol. 19, pp. 196-99.

    Article  Google Scholar 

  7. [7] B. Rottwinkel, A. Pereira, I. Alfred, C. Noelke, V. Wesling and S. Kaierle: J. Laser Appl., 2017, vol. 29, pp. 022310.

    Article  Google Scholar 

  8. [8] R. Vilar, E. Santos, P. Ferreira, N. Franco and R. Da Silva: Acta Mater., 2009, vol. 57, pp. 5292-302.

    Article  CAS  Google Scholar 

  9. [9] Y.J. Liang, J. Li, A. Li, X. Cheng, S. Wang and H.M. Wang: J. Alloys Compd., 2017, vol. 697, pp. 174-81.

    Article  CAS  Google Scholar 

  10. [10] M.B. Henderson, D. Arrell, R. Larsson, M. Heobel and G. Marchant: Sci. Technol. Weld. Joining, 2004, vol.9, pp.13-21.

    Article  CAS  Google Scholar 

  11. [11] Z. Liu and H. Qi: Acta Mater., 2015, vol. 87, pp.248-58.

    Article  CAS  Google Scholar 

  12. [12] Z. Gan, G. Yu, X. He and S. Li: Int. J. Heat Mass Tran, 2017, vol.104, pp. 28-38.

    Article  CAS  Google Scholar 

  13. [13] S. David, J. Vitek, S. Babu, L. Boatner and R. Reed: Sci. Technol. Weld. Joining, 1997, vol. 2, pp. 79-88.

    Article  CAS  Google Scholar 

  14. [14] J. Vitek, S. David, L and Boatner: Sci. Technol. Weld. Joining, 1997, vol. 2, pp.109-18.

    Article  CAS  Google Scholar 

  15. [15] J. Hunt: Mater. Sci. Eng., 1984, vol. 65, pp. 75-83.

    Article  CAS  Google Scholar 

  16. [16] M. Rappaz, S. David, J. Vitek and L. Boatner: Metall. Trans. A, 1990, vol. 21, pp.1767-82.

    Article  Google Scholar 

  17. [17] M. Rappaz, S. David, J. Vitek and L. Boatner: Metall. Trans. A, 1989, vol. 20, pp. 1125-38.

    Article  Google Scholar 

  18. M. Gäumann, S. Henry, F. Cleton, J.D. Wagniere, and W. Kurz: Mater. Sci. Eng. A, 1999, vol. 271, pp. 232-41.

    Article  Google Scholar 

  19. [19] T. Anderson, J. DuPont and T. DebRoy: Acta Mater. 2010, vol. 58, pp.1441-54.

    Article  CAS  Google Scholar 

  20. [20] L. Feng, W. Huang, X. Lin, H. Yang, Y. Li and J. Yang: Chinese J. Aeronaut, 2002, vol. 15, pp. 121-27.

    Article  Google Scholar 

  21. [21] S. Yang, W. Huang, W. Liu, M. Zhong and Y. Zhou: Acta Mater., 2002, vol. 50, pp. 315-25.

    Article  CAS  Google Scholar 

  22. [22] G. Wang, J. Liang, Y. Yang, Y. Shi, Y. Zhou, T. Jin and X. Sun: J. Mater. Sci. Technol., 2018, vol. 34, pp. 1315-24.

    Article  Google Scholar 

  23. [23] M. Gäumann, C. Bezencon, P. Canalis and W. Kurz: Acta Mater., 2001, vol. 49, pp. 1051-62.

    Article  Google Scholar 

  24. [24] W. Liu and J. DuPont: Acta Mater., 2005, vol. 53, pp. 1545-58.

    Article  CAS  Google Scholar 

  25. [25] W. Liu and J. DuPont: Acta Mater., 2004, vol. 52, pp. 4833-47.

    CAS  Google Scholar 

  26. [26] S. Li, H. Xiao, K. Liu, W. Xiao, Y. Li, X. Han, J. Mazumder and L. Song: Mater. Des., 2017, vol. 119, pp. 351-60.

    Article  CAS  Google Scholar 

  27. [27] A.J. Pinkerton and L. Li: J. Manuf. Sci. Eng., 2004, vol. 126, pp. 33-41.

    Article  Google Scholar 

  28. [28] H. Xiao, S. Li, X. Han, J. Mazumder and L. Song: Mater. Des., 2017, vol. 122, pp. 330-39.

    Article  CAS  Google Scholar 

  29. [29] Z. Liu and H. Qi: J. Mater. Process. Technol., 2015, vol. 216, pp. 19-27.

    Article  CAS  Google Scholar 

  30. [30] Z. Liu and H. Qi: Metall. Mater. Trans. A, 2014, vol. 45, pp. 1903-15.

    Article  CAS  Google Scholar 

  31. [31] Z. Liu, L. Jiang, Z. Wang and L. Song: Metall. Mater. Trans. A, 2018, vol. 49, pp. 6533-43.

    Article  CAS  Google Scholar 

  32. [32] Z. Liu, H. Qi and L. Jiang: J. Mater. Process. Technol., 2016, vol. 230, pp. 177-86.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 91860131 and 51905253), the Natural Science Foundation of Guangdong Province of China (Grant No. 2018A030310132), and the Natural Science Foundation of Shenzhen of China (Grant No. JCYJ20190809152401680).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoyang Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted February 25, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Shu, J. Effect of Pulse Frequency on the Transport Phenomena and Crystal Growth Behavior in Quasi-Continuous-Wave Laser Powder Deposition of Single-Crystal Superalloy. Metall Mater Trans B 51, 2797–2810 (2020). https://doi.org/10.1007/s11663-020-01937-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01937-2

Navigation