Skip to main content
Log in

Character rigidity of simple algebraic groups

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We prove the following extension of Tits’ simplicity theorem. Let \(k\) be an infinite field, G an algebraic group defined and quasi-simple over \(k,\) and \(G(k)\) the group of \(k\)-rational points of G. Let \(G(k)^+\) be the subgroup of \(G(k)\) generated by the unipotent radicals of parabolic subgroups of G defined over \(k\) and denote by \(PG(k)^+\) the quotient of \(G(k)^+\) by its center. Then every normalized function of positive type on \(PG(k)^+\) which is constant on conjugacy classes is a convex combination of \(\mathbf {1}_{PG(k)^+}\) and \(\delta _e.\) As corollary, we obtain that, when \(k\) is countable, the only ergodic IRS’s (invariant random subgroups) of \(PG(k)^+\) are \(\delta _{PG(k)^+}\) and \(\delta _{\{e\}}.\) A further consequence is that, when \(k\) is a global field and G is \(k\)-isotropic and has trivial center, every measure preserving ergodic action of \(G(k)\) on a probability space either factorizes through the abelianization \(G(k)_{\mathrm{ab}}\) or is essentially free.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abért, M., Glasner, Y., Virág, B.: Kesten’s theorem for invariant random subgroups. Duke Math. J. 163(3), 465–488 (2014)

    Article  MathSciNet  Google Scholar 

  2. Abert, M., Bergeron, N., Biringer, I., Gelander, T., Nikolov, N., Raimbault, J., Samet, I.: On the growth of \(L^2\)-invariants for sequences of lattices in Lie groups. Ann. Math. (2) 185(3), 711–790 (2017)

    Article  MathSciNet  Google Scholar 

  3. Bekka, B., de la Harpe, P., Valette, A.: Kazhdan’s Property (T), New Mathematical Monographs, vol. 11. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  4. Bekka, B.: Operator-algebraic superridigity for \(\text{ SL}_n(\mathbb{Z})\), \(n\ge 3\). Invent. Math. 169(2), 401–425 (2007)

    Article  MathSciNet  Google Scholar 

  5. Borel, A.: Linear Algebraic Groups, Graduate Texts in Mathematics, vol. 126, 2nd edn. Springer, New York, xii+288 (1991)

  6. Borel, A., Tits, J.: Groupes réductifs. Inst. Hautes Études Sci. Publ. Math. 27, 55–150 (1965)

    Article  Google Scholar 

  7. Borel, A., Tits, J.: Homomorphismes “abstraits” de groupes algébriques simples. Ann. Math. (2) 2(97), 499–571 (1973)

    Article  Google Scholar 

  8. Bourbaki, N.: Groupes et algèbres de Lie. Chapitres IV, V, VI. Hermann, Paris (1968) (loose errata)

  9. Bowen, L.: Invariant random subgroups of the free group. Groups Geom. Dyn. 9(3), 891–916 (2015)

    Article  MathSciNet  Google Scholar 

  10. Dixmier, J.: \(C^*\)-Algebras. North-Holland Publishing Co., Amsterdam, xiii+492 (1977)

  11. Dudko, A., Medynets, K.: Finite factor representations of Higman–Thompson groups. Groups Geom. Dyn. 8(2), 375–389 (2014)

    Article  MathSciNet  Google Scholar 

  12. Gelander, T.: A Lecture on Invariant Random Subgroups, New Directions in Locally Compact Groups, London Math. Soc. Lecture Note Ser., vol. 447, pp. 186–204. Cambridge University Press, Cambridge (2018)

  13. Gille, P.: Le problème de Kneser-Tits, Séminaire Bourbaki, vol. 2007/2008. Astérisque, 326, 2009, Exp. No. 983, vii, 39–81 (2010)

  14. Glasner, Y.: Invariant random subgroups of linear groups. Isr. J. Math. 219(1), 215–270 (2017)

    Article  MathSciNet  Google Scholar 

  15. Glimm, J.: Type I \(C^{\ast } \)-algebras. Ann. Math. (2) 2(73), 572–612 (1961)

    Article  Google Scholar 

  16. Howe, R., Moore, C.: Asymptotic properties of unitary representations. J. Funct. Anal. 32(1), 72–96 (1979)

    Article  MathSciNet  Google Scholar 

  17. Kirillov, A.A.: Positive-definite functions on a group of matrices with elements from a discrete field. Sov. Math. Dokl. 6, 707–709 (1965)

    MATH  Google Scholar 

  18. Larsen, M., Pink, R.: Finite subgroups of algebraic groups. J. Am. Math. Soc. 24(4), 1105–1158 (2011)

    Article  MathSciNet  Google Scholar 

  19. Murray, F.J., von Neumann, J.: On rings of operators. IV. Ann. Math. (2) 2(44), 716–808 (1943)

    Article  MathSciNet  Google Scholar 

  20. Ovčinnikov, S.V.: Positive definite functions on Chevalley groups. Funct. Anal. Appl. 5(1), 79–80 (1971)

    Article  MathSciNet  Google Scholar 

  21. Peterson, J.: Character rigidity for lattices in higher-rank groups (2014). http://www.math.vanderbilt.edu/~peters10/rigidity.pdf

  22. Peterson, J., Thom, A.: Character rigidity for special linear groups. J. Reine Angew. Math. 716, 207–228 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Platonov, V., Rapinchuk, A.: Algebraic Groups and Number Theory, Pure and Applied Mathematics, vol. 139. Academic Press, Inc., Boston, xii+614 (1994)

  24. Segal, I., von Neumann, J.: A theorem on unitary representations of semisimple Lie groups. Ann. Math. (2) 2(52), 509–517 (1950)

    Article  MathSciNet  Google Scholar 

  25. Skudlarek, H.-L.: Die unzerlegbaren Charaktere einiger diskreter Gruppen. Math. Ann. 223, 213–231 (1976)

    Article  MathSciNet  Google Scholar 

  26. Stuck, G., Zimmer, R.: Stabilizers for ergodic actions of higher rank semisimple groups. Ann. Math. (2) 139(3), 723–747 (1994)

    Article  MathSciNet  Google Scholar 

  27. Thoma, E.: Über positiv-definite Klassenfunktionen abzählbarer Gruppen. Math. Z. 84, 389–402 (1964)

    Article  MathSciNet  Google Scholar 

  28. Thoma, E.: Die unzerlegbaren, positiv-definiten Klassenfunktionen der abzählbar unendlichen, symmetrischen Gruppe. Math. Z. 85, 40–61 (1964)

    Article  MathSciNet  Google Scholar 

  29. Thoma, E.: Eine Charakterisierung diskreter Gruppen vom Typ I. Invent. Math. 6, 190–196 (1968)

    Article  MathSciNet  Google Scholar 

  30. Tits, J.: Algebraic and abstract simple groups. Ann. Math. (2) 2(80), 313–329 (1964)

    Article  MathSciNet  Google Scholar 

  31. Tits, J.: Groupes de Whitehead de groupes algébriques simples sur un corps (d’après V. P. Platonov et al.), Séminaire Bourbaki, 29e année (1976/77), Lecture Notes in Math., vol. 677, Exp. No. 505. Springer, Berlin, pp. 218–236 (1978)

  32. Vershik, A.M.: Nonfree actions of countable groups and their characters. J. Math. Sci. (N. Y.) 174, 1–6 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to Jesse Peterson for a useful suggestion concerning the proof of Corollary D.ii.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bachir Bekka.

Additional information

Communicated by Andreas Thom.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author acknowledges the support by the ANR (French Agence Nationale de la Recherche) through the projects Labex Lebesgue (ANR-11-LABX-0020-01) and GAMME (ANR-14-CE25-0004)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bekka, B. Character rigidity of simple algebraic groups. Math. Ann. 378, 1223–1243 (2020). https://doi.org/10.1007/s00208-020-02061-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-020-02061-x

Mathematics Subject Classification

Navigation