Skip to main content
Log in

Height gap conjectures, D-finiteness, and a weak dynamical Mordell–Lang conjecture

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In previous work, the first author, Ghioca, and the third author introduced a broad dynamical framework giving rise to many classical sequences from number theory and algebraic combinatorics. Specifically, these are sequences of the form \(f(\Phi ^n(x))\), where \(\Phi :X\dasharrow X\) and \(f:X\dasharrow {\mathbb {P}}^1\) are rational maps defined over \(\overline{{\mathbb {Q}}}\) and \(x\in X(\overline{{\mathbb {Q}}})\) is a point whose forward orbit avoids the indeterminacy loci of \(\Phi \) and f. They conjectured that if the sequence is infinite, then \(\limsup \frac{h(f(\Phi ^n(x)))}{\log n} > 0\). They also made a corresponding conjecture for \(\liminf \) and showed that it implies the Dynamical Mordell–Lang Conjecture. In this paper, we prove the \(\limsup \) conjecture as well as the \(\liminf \) conjecture away from a set of density 0. As applications, we prove results concerning the height growth rate of coefficients of D-finite power series as well as the Dynamical Mordell–Lang Conjecture up to a set of density 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Generalizing Definition 3.1, the upper asymptotic (or natural) density of \({\mathbf {T}}\subseteq {\mathbb {N}}^m\) is defined by \(\overline{d}({\mathbf {T}}) :=\limsup _{n\rightarrow \infty } |{\mathbf {T}}\cap [0, n]^m|/(n+1)^m\).

References

  1. Bell, J.P., Chen, S.: Power series with coefficients from a finite set. J. Combin. Theory Ser. A 151, 241–253 (2017)

    Article  MathSciNet  Google Scholar 

  2. Bombieri, E., Gubler, W.: Heights in Diophantine geometry, New Mathematical Monographs, vol. 4. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  3. Bell, J.P., Ghioca, D., Satriano, M.: Dynamical uniform bounds for fibers and a gap conjecture. Int. Math. Res. Not. IMRN. https://doi.org/10.1093/imrn/rnz257. arXiv:1906.08683

  4. Bell, J.P., Ghioca, D., Tucker, T.J.: The dynamical Mordell–Lang problem for Noetherian spaces. Funct. Approx. Comment. Math. 53(2), 313–328 (2015)

    Article  MathSciNet  Google Scholar 

  5. Bell, J.P., Ghioca, D., Tucker, T.J.: The dynamical Mordell–Lang conjecture, Mathematical Surveys and Monographs, vol. 210. American Mathematical Society, Providence, RI (2016)

    Book  Google Scholar 

  6. Bell, J.P., Nguyen, K.D., Zannier, U.: \(D\)-finiteness, rationality, and height. Trans. Am. Math. Soc. https://doi.org/10.1090/tran/8046. arXiv:1905.06450

  7. Bober, J.: Factorial ratios, hypergeometric functions, and a family of step functions. J. Lond. Math. Soc. 79(2), 422–444 (2009)

    Article  MathSciNet  Google Scholar 

  8. Cantat, S., Xie, J.: On degrees of birational mappings. Math. Res. Lett. 27(2), 319–337 (2020)

    Article  MathSciNet  Google Scholar 

  9. Dreyfus, T., Hardouin, C., Roques, J., Singer, M.F.: On the nature of the generating series of walks in the quarter plane. Invent. Math. 213(1), 139–203 (2018)

    Article  MathSciNet  Google Scholar 

  10. Garoufalidis, S.: \(G\)-functions and multisum versus holonomic sequences. Adv. Math. 220(6), 1945–1955 (2009)

    Article  MathSciNet  Google Scholar 

  11. Garrabrant, S., Pak, I.: Words in linear groups, random walks, automata and \(P\)-recursiveness. J. Comb. Algebra 1(2), 127–144 (2017)

    Article  MathSciNet  Google Scholar 

  12. Gignac, W.: Measures and dynamics on Noetherian spaces. J. Geom. Anal. 24(4), 1770–1793 (2014)

    Article  MathSciNet  Google Scholar 

  13. Hartshorne, R.: Algebraic geometry, Graduate Texts in Mathematics, vol. 52. Springer, New York, Heidelberg (1977)

    Book  Google Scholar 

  14. Hindry, M., Silverman, J.H.: Diophantine geometry. An introduction, Graduate Texts in Mathematics, vol. 201. Springer, New York (2000)

  15. Lang, S.: Fundamentals of Diophantine geometry. Springer, New York (1983)

    Book  Google Scholar 

  16. Lech, C.: A note on recurring series. Ark. Mat. 2, 417–421 (1953)

    Article  MathSciNet  Google Scholar 

  17. Lipshitz, L.: The diagonal of a \(D\)-finite power series is \(D\)-finite. J. Algebra 113(2), 373–378 (1988)

    Article  MathSciNet  Google Scholar 

  18. Lipshitz, L.: \(D\)-finite power series. J. Algebra 122(2), 353–373 (1989)

    Article  MathSciNet  Google Scholar 

  19. Lehmann, B., Tanimoto, S.: On exceptional sets in Manin’s conjecture. Res. Math. Sci. 6(1), 41 (2019). Paper No. 12

    Article  MathSciNet  Google Scholar 

  20. Petsche, C.: On the distribution of orbits in affine varieties. Ergodic Theory Dynam. Syst. 35(7), 2231–2241 (2015)

    Article  MathSciNet  Google Scholar 

  21. van der Poorten, A.J., Shparlinski, I.E.: On linear recurrence sequences with polynomial coefficients. Glasg. Math. J. 38, 147–155 (1996)

    Article  MathSciNet  Google Scholar 

  22. Schanuel, S.H.: Heights in number fields. Bull. Soc. Math. Fr. 107(4), 433–449 (1979)

    Article  MathSciNet  Google Scholar 

  23. Soundararajan, K.: Integral factorial ratios, preprint (2019). arXiv:1901.05133

  24. Stanley, R.P.: Differentiably finite power series. Eur. J. Combin. 1(2), 175–188 (1980)

    Article  MathSciNet  Google Scholar 

  25. Stanley, R.P.: Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, vol. 62. Cambridge University Press, Cambridge (1999)

  26. Wan, D.: Heights and zeta functions in function fields, The arithmetic of function fields, Ohio State Univ. Math. Res. Inst. Publ., vol. 2, pp. 455–463. de Gruyter, Berlin (1992)

  27. Wilf, H.S., Zeilberger, D.: An algorithmic proof theory for hypergeometric (ordinary and “\(q\)”) multisum/integral identities. Invent. Math. 108(3), 575–633 (1992)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank Ken Davidson, Vesselin Dimitrov, Vern Paulsen, and Joe Silverman for helpful conversations. We are also grateful to the referee for fruitful suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason P. Bell.

Additional information

Communicated by Kannan Soundararajan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors were partially supported by Discovery Grants from the National Science and Engineering Research Council of Canada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bell, J.P., Hu, F. & Satriano, M. Height gap conjectures, D-finiteness, and a weak dynamical Mordell–Lang conjecture. Math. Ann. 378, 971–992 (2020). https://doi.org/10.1007/s00208-020-02062-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-020-02062-w

Mathematics Subject Classification

Navigation