Skip to main content
Log in

Effect of Deposition Rate and Deposition Temperature on Residual Stress of HVOF-Sprayed Coatings

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In this paper, we examine the correlation between thermal spray process parameters that affect the deposition rate and the residual stress buildup in HVOF metallic and cermet coatings. Parameters of interest including feed-rate, raster speed, and substrate temperature (controlled via external cooling means) were evaluated in the context of their effect on the stress evolution in gas fuel HVOF-sprayed coatings. The process variables investigated are intended to change the deposition rate and subsequently the local deposition temperature (TLD) at the location of impact. The residual stress during the deposition tends to be more tensile with increased TLD, and this tendency is more significant when the change in TLD is produced by the feed rate. Compressive stresses result for lower TLD due to dominance of the peening effect. A systematic study of these effects was conducted for gas fuel HVOF-sprayed Ni- and WC-12%wt.Co-coatings. The Ni-coatings represent the family of ductile metallic materials, whereas the WC-12%wt.Co-coatings represent the behavior of hard cermets. Both materials develop compressive stress at low TLD and change into tensile stress at high TLD by manipulation of deposition rate parameters. Extensions to other materials and HVOF processes are also presented to support the analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J.R. Davis, Handbook of Thermal Spray Technology, ASM International, Oxford, 2004

    Google Scholar 

  2. T. Varis, T. Suhonen, A. Ghabchi, A. Valarezo, S. Sampath, X. Liu, and S.-P. Hannula, Formation Mechanisms, Structure, and Properties of HVOF-Sprayed WC-CoCr Coatings: An Approach Toward Process Maps, J. Therm. Spray Technol., 2014, 23(6), p 1009-1018. https://doi.org/10.1007/s11666-014-0110-5

    Article  CAS  Google Scholar 

  3. L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, 2nd ed., Wiley, London, 2008, https://doi.org/10.1016/0263-8223(96)80006-7

    Book  Google Scholar 

  4. C.-J. Li, C.-X. Li, G.-J. Yang, and Y.-Y. Wang, Examination of Substrate Surface Melting-Induced Splashing During Splat Formation in Plasma Spraying, J. Therm. Spray Technol., 2006, 15(4), p 717-724

    CAS  Google Scholar 

  5. G. Bolelli, V. Cannillo, L. Lusvarghi, and S. Riccò, Mechanical and Tribological Properties of Electrolytic Hard Chrome and HVOF-Sprayed Coatings, Surf. Coatings Technol., 2006, 200(9), p 2995-3009. https://doi.org/10.1016/j.surfcoat.2005.04.057

    Article  CAS  Google Scholar 

  6. P. Bansal, P.H. Shipway, and S.B. Leen, Residual Stresses in High-Velocity Oxy-Fuel Thermally Sprayed Coatings - Modelling the Effect of Particle Velocity and Temperature during the Spraying Process, Acta Mater., 2007, 55(15), p 5089-5101

    CAS  Google Scholar 

  7. P. Bansal, P.H. Shipway, and S.B. Leen, Effect of Particle Impact on Residual Stress Development in HVOF Sprayed Coatings, J. Therm. Spray Technol., 2006, 15(4), p 570-575

    Google Scholar 

  8. C. Lyphout, P. Nylen, and L.G. Östergren, Adhesion Strength of HVOF Sprayed IN718 Coatings, J. Therm. Spray Technol., 2012, 56, p 86-95

    Google Scholar 

  9. C. Lyphout, P. Nylén, A. Manescu, and T. Pirling, Residual Stresses Distribution through Thick HVOF Sprayed Inconel 718 Coatings, J. Therm. Spray Technol., 2008, 17(5-6), p 915-923

    CAS  Google Scholar 

  10. S. Kuroda and T. Clyne, The Quenching Stresses in Thermally Sprayed Coatings, Thin Solid Films, 1991, 200(1), p 49-66

    CAS  Google Scholar 

  11. S. Kuroda, Y. Tashiro, H. Yumoto, S. Taira, H. Fukanuma, and S. Tobe, Peening Action and Residual Stresses in High-Velocity Oxygen Fuel Thermal Spraying of 316L Stainless Steel, J. Therm. Spray Technol., 2001, 10(2), p 367-374

    CAS  Google Scholar 

  12. A. Laukkanen, K. Holmberg, J. Koskinen, H. Ronkainen, K. Wallin, and S. Varjus, Tribological Contact Analysis of a Rigid Ball Sliding on a Hard Coated Surface, Part III: Fracture Toughness Calculation and Influence of Residual Stresses, Surf. Coatings Technol., 2006, 200(12–13), p 3824-3844

    CAS  Google Scholar 

  13. T.-G. Wang, S.-S. Zhao, W.-G. Hua, J.-B. Li, J. Gong, and C. Sun, Estimation of Residual Stress and Its Effects on the Mechanical Properties of Detonation Gun Sprayed WC–Co Coatings, Mater. Sci. Eng. A, 2010, 527(3), p 454-461. https://doi.org/10.1016/j.msea.2009.10.009

    Article  CAS  Google Scholar 

  14. A. Vackel, T. Nakamura, and S. Sampath, Mechanical Behavior of Spray-Coated Metallic Laminates, J. Therm. Spray Technol., 2016, 25(5), p 1009-1019

    CAS  Google Scholar 

  15. G.M. Smith and S. Sampath, Sustainability of Metal Structures via Spray-Clad Remanufacturing, JOM, 2018, 45, p 16

    Google Scholar 

  16. A. Vackel and S. Sampath, Fatigue Behavior of Thermal Sprayed WC-CoCr- Steel Systems: Role of Process and Deposition Parameters, Surf. Coatings Technol., 2017, 315, p 408-416. https://doi.org/10.1016/j.surfcoat.2017.02.062

    Article  CAS  Google Scholar 

  17. A. Vackel, G. Dwivedi, and S. Sampath, Structurally Integrated, Damage-Tolerant, Thermal Spray Coatings, JOM., 2015, 6, p 49

    Google Scholar 

  18. H.J.C. Voorwald, R. Padilha, M.Y.P. Costa, W.L. Pigatin, and M.O.H. Cioffi, Effect of Electroless Nickel Interlayer on the Fatigue Strength of Chromium Electroplated AISI, 4340 Steel, Int. J. Fatigue, 2007, 29(4), p 695-704

    CAS  Google Scholar 

  19. R.T.R. McGrann, D.J. Greving, J.R. Shadley, E.F. Rybicki, T.L. Kruecke, and B.E. Bodger, The Effect of Coating Residual Stress on the Fatigue Life of Thermal Spray-Coated Steel and Aluminum, Surf. Coatings Technol., 1998, 108–109, p 59-64

    Google Scholar 

  20. A. Vaidya, V. Srinivasan, T. Streibl, M. Friis, W. Chi, and S. Sampath, Process Maps for Plasma Spraying of Yttria-Stabilized Zirconia: An Integrated Approach to Design, Optimization and Reliability, Mater. Sci. Eng. A, 2008, 497(1–2), p 239-253

    Google Scholar 

  21. A. Valarezo and S. Sampath, An Integrated Assessment of Process-Microstructure-Property Relationships for Thermal-Sprayed NiCr Coatings, J. Therm. Spray Technol., 2011, 20(6), p 1244-1258

    CAS  Google Scholar 

  22. S. Sampath, X. Jiang, A. Kulkarni, J. Matejicek, D.L. Gilmore, and R.A. Neiser, Development of Process Maps for Plasma Spray: Case Study for Molybdenum, Mater. Sci. Eng. A, 2003, 348(1-2), p 54-66

    Google Scholar 

  23. A. Valarezo, W.B. Choi, W. Chi, A. Gouldstone, and S. Sampath, Process Maps of Ni-Cr Coatings by HVOF Spraying, J. Therm. Spray Technol., 2007, 50, p 954-959

    Google Scholar 

  24. K. Shinoda, J. Colmenares-Angulo, A. Valarezo, and S. Sampath, Effect of Deposition Rate on the Stress Evolution of Plasma-Sprayed Yttria-Stabilized Zirconia, J. Therm. Spray Technol., 2012, 21(6), p 1224-1233

    CAS  Google Scholar 

  25. W.C. Lih, S.H. Yang, C.Y. Su, S.C. Huang, I.C. Hsu, and M.S. Leu, Effects of Process Parameters on Molten Particle Speed and Surface Temperature and the Properties of HVOF CrC/NiCr Coatings, Surf. Coatings Technol., 2000, 133–134, p 54-60

    Google Scholar 

  26. W. Fang, T.Y. Cho, J.H. Yoon, K.O. Song, S.K. Hur, S.J. Youn, and H.G. Chun, Processing Optimization, Surface Properties and Wear Behavior of HVOF Spraying WC–CrC–Ni Coating, J. Mater. Process. Technol., 2009, 209(7), p 3561-3567. https://doi.org/10.1016/j.jmatprotec.2008.08.024

    Article  CAS  Google Scholar 

  27. S. Vackel, A. Dwivedi, and G. Sampath, Influence of In-Flight Particle States on the Particle Peening Intensity and Related Properties of HVOF WC-CoCr Coatings, Therm. Spray Bull., 2015, 8, p 32-41

    Google Scholar 

  28. H. Ruiz-Luna, D. Lozano-Mandujano, J.M. Alvarado-Orozco, A. Valarezo, C.A. Poblano-Salas, L.G. Trápaga-Martínez, F.J. Espinoza-Beltrán, and J. Muñoz-Saldaña, Effect of HVOF Processing Parameters on the Properties of NiCoCrAlY Coatings by Design of Experiments, J. Therm. Spray Technol., 2014, 23(6), p 950-961

    CAS  Google Scholar 

  29. A. Valarezo, Process Design for Reliable High Velocity Thermal Spray Coatings: An Integrated Approach through Process Maps and Advanced in Situ Characterization, Stony Brook University, 2008.

  30. A. Valarezo, G. Bolelli, W.B. Choi, S. Sampath, V. Cannillo, L. Lusvarghi, and R. Rosa, Damage Tolerant Functionally Graded WC-Co/Stainless Steel HVOF Coatings, Surf. Coatings Technol., 2010, 205(7), p 2197-2208. https://doi.org/10.1016/j.surfcoat.2010.08.148

    Article  CAS  Google Scholar 

  31. M. Friis and C. Persson, Control of Thermal Spray Processes by Means of Process Maps and Process Windows, J. Therm. Spray Technol., 2003, 12(1), p 44-52

    Google Scholar 

  32. S. Sampath, V. Srinivasan, A. Valarezo, A. Vaidya, and T. Streibl, Sensing, Control, and in Situ Measurement of Coating Properties: An Integrated Approach toward Establishing Process-Property Correlations, J. Therm. Spray Technol., 2009, 18(2), p 243-255

    CAS  Google Scholar 

  33. A.S.M. Ang, N. Sanpo, M.L. Sesso, S.Y. Kim, and C.C. Berndt, Thermal Spray Maps: Material Genomics of Processing Technologies, J. Therm. Spray Technol., 2013, 22(7), p 1170-1183. https://doi.org/10.1007/s11666-013-9970-3

    Article  CAS  Google Scholar 

  34. J.A. Hermann-Muñoz, J.A. Rincón-López, G.A. Clavijo-Mejía, A.L. Giraldo-Betancur, J.M. Alvarado-Orozco, A. De Vizcaya-Ruiz, and J. Muñoz-Saldaña, Influence of HVOF Parameters on HAp Coating Generation: An Integrated Approach Using Process Maps, Surf. Coatings Technol., 2019, 358, p 299-307. https://doi.org/10.1016/j.surfcoat.2018.11.029

    Article  CAS  Google Scholar 

  35. J. Colmenares-Angulo, K. Shinoda, T. Wentz, W. Zhang, Y. Tan, and S. Sampath, On the Response of Different Particle State Sensors to Deliberate Process Variations, J. Therm. Spray Technol., 2011, 20(5), p 1035-1048

    Google Scholar 

  36. P. Fauchais, Understanding Plasma Spraying, J. Phys. D Appl. Phys., 2004, 56, p 95

    Google Scholar 

  37. A. McDonald, M. Lamontagne, C. Moreau, and S. Chandra, Impact of Plasma-Sprayed Metal Particles on Hot and Cold Glass Surfaces, Thin Solid Films, 2006, 514(1), p 212-222

    CAS  Google Scholar 

  38. S. Sampath, X. Jiang, J. Matejicek, A. Leger, and A. Vardelle, Substrate Temperature Effects on Splat Formation, Microstructure Development and Properties of Plasma Sprayed Coatings Part I: Case Study for Partially Stabilized Zirconia, Mater. Sci. Eng. A, 1999, 272(1), p 181-188

    Google Scholar 

  39. K. Shinoda, Y. Kojima, and T. Yoshida, In Situ Measurement System for Deformation and Solidification Phenomena of Yttria-Stabilized Zirconia Droplets Impinging on Quartz Glass Substrate under Plasma-Spraying Conditions, J. Therm. Spray Technol., 2005, 46, p 98

    Google Scholar 

  40. P.J. Wray, Volume Change Accompanying Solidification, Metall. Trans., 1974, 45, p 15

    Google Scholar 

  41. S. Sampath, Rapid Solidification and Microstructure Development during Plasma Spray Deposition.Pdf, n.d.

  42. W. Trompetter, M. Hyland, D. McGrouther, P. Munroe, and A. Markwitz, Effect of Substrate Hardness on Splat Morphology in High-Velocity Thermal Spray Coatings, J. Therm. Spray Technol., 2006, 15(4), p 663-669

    CAS  Google Scholar 

  43. W.J. Trompetter, M. Hyland, P. Munroe, and A. Markwitz, Evidence of Mechanical Interlocking of NiCr Particles Thermally Sprayed onto Al Substrates, J. Therm. Spray Technol., 2005, 14(4), p 524-529

    CAS  Google Scholar 

  44. S. Brossard, P.R. Munroe, and M.M. Hyland, Study of the Splat Formation for HVOF Sprayed NiCr on Stainless Steel Substrates and the Effects of Heating and Boiling Pre-Treatments, J. Therm. Spray Technol., 2010, 19(5), p 990-1000

    CAS  Google Scholar 

  45. F. Oviedo and A. Valarezo, Residual Stress in High Velocity Impact Coatings: Parametric Finite Element Analysis Approach, J. Therm. Spray Technol., 2020, TBD (Special Issue of Residual Stress in Thermal Spray Coatings and Cold Spray).

  46. P. Gougeon and C. Moreau, In-Flight Particle Surface Temperature Measurement: Influence of the Plasma Light Scattered by the Particles, J. Therm. Spray Technol., 1993, 2(3), p 229-233

    CAS  Google Scholar 

  47. M. Vardelle, A. Vardelle, P. Fauchais, and C. Moreau, Pyrometer System for Monitoring the Particle Impact on a Substrate during a Plasma Spray Process, Meas. Sci. Technol., 1994.

  48. J.R. Fincke, D.C. Haggard, and W.D. Swank, Particle Temperature Measurement in the Thermal Spray Process, J. Therm. Spray Technol., 2001, 10(2), p 255-266

    Google Scholar 

  49. P. Fauchais and M. Vardelle, Sensors in Spray Processes, J. Therm. Spray Technol., 2010, 19(4), p 668-694

    CAS  Google Scholar 

  50. G. Mauer, R. Vaen, and D. Stöver, Plasma and Particle Temperature Measurements in Thermal Spray: Approaches and Applications, J. Therm. Spray Technol., 2011, 20(3), p 391-406

    Google Scholar 

  51. G. Mauer, R. Vaßen, and D. Stöver, Comparison and Applications of DPV-2000 and Accuraspray-G3 Diagnostic Systems, J. Therm. Spray Technol., 2007, 16(3), p 414-424

    CAS  Google Scholar 

  52. Y.C. Tsui and T.W. Clyne, An Analytical Model for Predicting Residual Stresses in Progressively Deposited Coatings Part 1: Planar Geometry, Thin Solid Films, 1997, 306(1), p 23-33

    CAS  Google Scholar 

  53. T.W. Clyne and S.C. Gill, Residual Stresses in Thermal Spray Coatings and Their Effect on Interfacial Adhesion: A Review of Recent Work, J. Therm. Spray Technol., 1996, 5(4), p 401-418

    CAS  Google Scholar 

  54. S.C. Gill and T.W. Clyne, Investigation of Residual Stress Generation during Thermal Spraying by Continuous Curvature Measurement, Thin Solid Films, 1994.

  55. T.W. Clyne and S.C. Gill, Residual Stresses in Thermal Spray Coatings and Their Effect on Interfacial Adhesion: A Review of Recent Work, Journal of Thermal Spray Technology, 1996.

  56. F. Hugot, J. Patru, P. Fauchais, and L. Bianchi, Modeling of a Substrate Thermomechanical Behavior during Plasma Spraying, J. Mater. Process. Technol., 2007, 190(1–3), p 317-323

    CAS  Google Scholar 

  57. J. Matejicek and S. Sampath, In Situ Measurement of Residual Stresses and Elastic Moduli in Thermal Sprayed Coatings Part 1: Apparatus and Analysis, Acta Mater., 2003, 51(3), p 863-872

    CAS  Google Scholar 

  58. J. Matejicek, S. Sampath, D. Gilmore, and R. Neiser, In Situ Measurement of Residual Stresses and Elastic Moduli in Thermal Sprayed Coatings Part 2: Processing Effects on Properties of Mo Coatings, Acta Mater., 2003, 51(3), p 873-885

    CAS  Google Scholar 

  59. K. Shinoda, Y. Tan, and S. Sampath, Powder Loading Effects of Yttria-Stabilized Zirconia in Atmospheric Dc Plasma Spraying, Plasma Chem. Plasma Process., 2010, 30(6), p 761-778

    CAS  Google Scholar 

  60. C. Verdon, A. Karimi, and J.-L. Martin, A Study of High Velocity Oxy-Fuel Thermally Sprayed Tungsten Carbide Based Coatings. Part 1: Microstructures, Mater. Sci. Eng. A, 1998, 246(1-2), p 11-24

    Google Scholar 

  61. A. Valarezo, W.B. Choi, W. Chi, A. Gouldstone, and S. Sampath, Process Control and Characterization of NiCr Coatings by HVOF-DJ2700 System: A Process Map Approach, J. Therm. Spray Technol., 2010, 19(5), p 98

    Google Scholar 

  62. A. Valarezo, G. Dwivedi, S. Sampath, R. Musalek, and J. Matejicek, Elastic and Anelastic Behavior of TBCs Sprayed at High-Deposition Rates, J. Therm. Spray Technol., 2014, https://doi.org/10.1007/s11666-014-0154-6

    Article  Google Scholar 

  63. G.R. Johnson and W.H. Cook, A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures.PDF, 1983, p 541–543.

  64. P. Bansal, P.H. Shipway, and S.B. Leen, Residual Stresses in High-Velocity Oxy-Fuel Thermally Sprayed Coatings-Modelling the Effect of Particle Velocity and Temperature during the Spraying Process, Acta Mater., 2007.

  65. W.-Y. Li, C. Zhang, C.-J. Li, and H. Liao, Modeling Aspects of High Velocity Impact of Particles in Cold Spraying by Explicit Finite Element Analysis, J. Therm. Spray Technol., 2009, 18(5–6), p 921-933

    CAS  Google Scholar 

  66. M. Meo and R. Vignjevic, Finite Element Analysis of Residual Stress Induced by Shot Peening Process, Adv. Eng. Softw., 2003, 34(9), p 569-575

    Google Scholar 

  67. S. Kuroda, Y. Tashiro, H. Yumoto, S. Taira, H. Fukanuma, and S. Tobe, Peening Action and Residual Stresses in High-Velocity Oxygen Fuel Thermal Spraying of 316L Stainless Steel, J. Therm. Spray Technol., 2001.

  68. J. Matejicek and S. Sampath, Intrinsic Residual Stresses in Single Splats Produced by Thermal Spray Processes, Acta Mater., 2001, 49(11), p 1993-1999

    CAS  Google Scholar 

  69. T. Suhonen, T. Varis, S. Dosta, M. Torrell, and J.M. Guilemany, Residual Stress Development in Cold Sprayed Al, Cu and Ti Coatings, Acta Mater., 2013.

  70. G. Bolelli, V. Cannillo, L. Lusvarghi, R. Rosa, A. Valarezo, W.B. Choi, R. Dey, C. Weyant, and S. Sampath, Functionally Graded WC-Co/NiAl HVOF Coatings for Damage Tolerance, Wear and Corrosion Protection, Surf. Coatings Technol., 2012, 206(8-9), p 2585-2601. https://doi.org/10.1016/j.surfcoat.2011.11.018

    Article  CAS  Google Scholar 

  71. M. Gui, R. Eybel, S. Radhakrishnan, F. Monerie-Moulin, R. Raininger, and P. Taylor, Residual Stress in HVOF Thermally Sprayed WC-10Co-4Cr Coating in Landing Gear Application, J. Therm. Spray Technol., 2017, 28(6), p 1295-1307. https://doi.org/10.1007/s11666-019-00894-w

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Industrial Consortium for Thermal Spray Technology. Collaboration and funding is gratefully acknowledged. Samples were deposited at facilies in Kennametal (before Deloro Stellite), PTI-Plasma Technology Industries, Caterpillar, Oerlikon Metco. We would also like to thank Dr. Roberto Rosa, Satish Dixit, and Michael Chin for his help in the spray experiments. Last, Alfredo Valarezo thanks the funding support from the “Chancellor Grants” from USFQ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Valarezo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Residual Stresses Credit Line: This article is part of a special topical focus in the Journal of Thermal Spray Technology on Advanced Residual Stress Analysis in Thermal Spray and Cold Spray Processes. This issue was organized by Dr. Vladimir Luzin, Australian Centre for Neutron Scattering; Dr. Seiji Kuroda, National Institute of Materials Science; Dr. Shuo Yin, Trinity College Dublin; and Dr. Andrew Ang, Swinburne University of Technology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valarezo, A., Shinoda, K. & Sampath, S. Effect of Deposition Rate and Deposition Temperature on Residual Stress of HVOF-Sprayed Coatings. J Therm Spray Tech 29, 1322–1338 (2020). https://doi.org/10.1007/s11666-020-01073-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-020-01073-y

Keywords

Navigation