Skip to main content
Log in

Differences between plate theory and lumped element model in electrostatic analysis of one-sided and two-sided CMUTs with circular microplates

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

An analytical study of capacitive micromachined ultrasonic transducers (CMUTs) with circular microplates has been carried out. The study comprises one-sided (single electrode back-plate) and two-sided (double electrode back-plate) systems, and derives universal correction factors for pull-in voltage and critical displacement to be used in lumped element model (LEM) analysis. We employ von Karman plate theory and the single-mode Galerkin decomposition method to solve the equations. Consequently, voltage–deflection relations have been derived. By comparing results from plate theory with LEM, it is concluded: (1) for the one-sided CMUT by neglecting geometrical nonlinearity, we find \(\frac{{{V_{\text {Pull in - P}}}}}{{{V_{\text {Pull in - LEM}}}}} = 1.327\) and the ratio of critical displacement derived from plate theory over critical displacement from LEM is always 1.882. (2) For the one-sided CMUT including geometrical nonlinearity \(\frac{{{V_{\text {Pull in} - P}}}}{{{V_{\text {Pull in - LEM}}}}} = 1.45\) and critical displacement from plate theory over critical displacement from LEM is 1.792, for a specific set of parameters. (3) For the two-sided CMUT, there is no differences in using linear nor nonlinear analysis and \(\frac{{{V_{\text {Pull in - P}}}}}{{{V_{\text {Pull in - LEM}}}}} = 1.276\). For all studied cases, finite element (FE) analysis has been performed to validate the analytical outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Saadatmand M, Kook J (2019) Multi-objective optimization of a circular dual back-plate MEMS microphone: tradeoff between pull-in voltage, sensitivity and resonance frequency. Microsyst Technol 25(8):2937–2947

    Article  Google Scholar 

  2. Rochus V, Wang B, Tilmans HAC, Chaudhuri AR, Helin P, Severi S, Rottenberg X (2016) Fast analytical design of MEMS capacitive pressure sensors with sealed cavities. Mechatronics 40:244–250

    Article  Google Scholar 

  3. Liu J, Martin DT, Kadirvel K, Nishida T, Cattafesta L, Sheplak M, Mann BP (2008) Nonlinear model and system identification of a capacitive dual-backplate MEMS microphone. J Sound Vib 309(1):276–292

    Article  Google Scholar 

  4. Jian L 2007) Nonlinear dynamics of a dual-backplate capacitive MEMS microphone. PhD thesis, Citeseer

  5. Liu J, Martin DT, Nishida T, Cattafesta LN, Sheplak M, Brian MP (2008) Harmonic balance nonlinear identification of a capacitive dual-backplate MEMS microphone. J Microelectromech Syst 17(3):698–708

    Article  Google Scholar 

  6. Rombach P, Müllenborn M, Klein U, Rasmussen K (2002) The first low voltage, low noise differential silicon microphone, technology development and measurement results. Sens Actuators A Phys 95(2):196–201

    Article  Google Scholar 

  7. Martin DT (2007) Design, fabrication, and characterization of a MEMS dual-backplate capacitive microphone. PhD thesis, University of Florida

  8. Martin D, Liu J, Kadirvel K, Fox R, Sheplak M, Nishida T (2006) Development of a MEMS dual backplate capacitive microphone for aeroacoustic measurements. In: 44th AIAA Aerospace Sciences Meeting and Exhibit, p 1246

  9. Batra RC, Porfiri M, Spinello D (2007) Review of modeling electrostatically actuated microelectromechanical systems. Smart Mater Struct 16(6):R23

    Article  Google Scholar 

  10. Batra RC, Porfiri M, Spinello D (2008) Vibrations and pull-in instabilities of microelectromechanical von Kármán elliptic plates incorporating the Casimir force. J Sound Vib 315(4):939–960

    Article  Google Scholar 

  11. Faris WF (2003) Nonlinear dynamics of annular and circular plates under thermal and electrical loadings

  12. Vogl GW, Nayfeh AH (2005) A reduced-order model for electrically actuated clamped circular plates. J Micromech Microeng 15(4):684

    Article  Google Scholar 

  13. Ahmad B, Pratap R (2010) Elasto-electrostatic analysis of circular microplates used in capacitive micromachined ultrasonic transducers. IEEE Sens J 10(11):1767–1773

    Article  Google Scholar 

  14. Chao PCP, Chiu CW, Tsai CY (2006) A novel method to predict the pull-in voltage in a closed form for micro-plates actuated by a distributed electrostatic force. J Micromech Microeng 16(5):986

    Article  Google Scholar 

  15. Jallouli A, Kacem N, Bourbon G, Le Moal P, Walter V, Lardies J (2016) Pull-in instability tuning in imperfect nonlinear circular microplates under electrostatic actuation. Phys Lett A 380(46):3886–3890

    Article  Google Scholar 

  16. Aggarwal S, Paul BE, DasGupta A, Chatterjee D (2017) Experimental characterization of piezoelectrically actuated micromachined silicon valveless micropump. Microfluidics Nanofluidics 21(1):2

    Article  Google Scholar 

  17. Younis MI (2011) MEMS linear and nonlinear statics and dynamics, vol 20. Springer, Berlin

    Book  Google Scholar 

  18. Shavezipur M, Hashemi SM, Nieva P, Khajepour A (2010) Development of a triangular-plate MEMS tunable capacitor with linear capacitance–voltage response. Microelectron Eng 87(9):1721–1727

    Article  Google Scholar 

  19. Medina L, Gilat R, Krylov S (2017) Modeling strategies of electrostatically actuated initially curved bistable micro plates. Int J Solids Struct 118:1–13

    Article  MATH  Google Scholar 

  20. Wygant IO, Kupnik M, Khuri-Yakub BT (2018) An analytical model for capacitive pressure transducers with circular geometry. J Microelectromech Syst 27(3):448–456

    Article  Google Scholar 

  21. Sajadi B, Goosen H, van Keulen F (2018) Electrostatic instability of micro-plates subjected to differential pressure: a semi-analytical approach. Int J Mech Sci 138:210–218

    Article  Google Scholar 

  22. Pelesko JA, Chen XY (2003) Electrostatic deflections of circular elastic membranes. J Electrostat 57(1):1–12

    Article  Google Scholar 

  23. Siddique JI, Deaton R, Sabo E, Pelesko JA (2011) An experimental investigation of the theory of electrostatic deflections. J Electrostat 69(1):1–6

    Article  Google Scholar 

  24. Engholm M, Pedersen T (2016) Modeling of plates with multiple anisotropic layers and residual stress. Sens Actuators A Phys 240:70–79

    Article  Google Scholar 

  25. la Cour MF, Christiansen TL, Jensen JA, Thomsen EV (2015) Electrostatic and small-signal analysis of CMUTs with circular and square anisotropic plates. IEEE Trans Ultrason Ferroelectr Freq Control 62(8):1563–1579

    Article  Google Scholar 

  26. Skrzypacz P, Kadyrov S, Nurakhmetov D, Wei D (2019) Analysis of dynamic pull-in voltage of a graphene MEMS model. Nonlinear Anal Real World Appl 45:581–589

    Article  MathSciNet  MATH  Google Scholar 

  27. Talebian S, Rezazadeh G, Fathalilou M, Toosi B (2010) Effect of temperature on pull-in voltage and natural frequency of an electrostatically actuated microplate. Mechatronics 20(6):666–673

    Article  Google Scholar 

  28. Saeedivahdat A, Abdolkarimzadeh F, Feyzi A, Rezazadeh G, Tarverdilo S (2010) Effect of thermal stresses on stability and frequency response of a capacitive microphone. Microelectron J 41(12):865–873

    Article  Google Scholar 

  29. Younis MI, Abdel-Rahman EM, Nayfeh A (2003) A reduced-order model for electrically actuated microbeam-based MEMS. J Microelectromech Syst 12(5):672–680

    Article  Google Scholar 

  30. Milad S, Alireza S (2018) Nonlinear vibration analysis of a circular micro-plate in two-sided NEMS/MEMS capacitive system by using harmonic balance method. Acta Mech Sin 1–15

  31. Elishakoff I, Ruta GC, Stavsky Y (2006) A novel formulation leading to closed-form solutions for buckling of circular plates. Acta Mech 185(1–2):81–88

    Article  MATH  Google Scholar 

  32. Jia XL, Yang J, Kitipornchai S, Lim CW (2012) Resonance frequency response of geometrically nonlinear micro-switches under electrical actuation. J Sound Vib 331(14):3397–3411

    Article  Google Scholar 

  33. Guyader J-L (2013) Vibration in continuous media. Wiley, New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milad Saadatmand.

Additional information

Technical Editor: Pedro Manuel Calas Lopes Pacheco, D.Sc.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

In Eq. (20) coefficients \({K_{11}}-{K_{16}}\) are:

$$\begin{aligned} {K_{11}}& {}= \frac{{{\alpha _2}\,{V^2}}}{6},\,\,{K_{12}} = \frac{{32}}{3},\,{K_{13}} = - \frac{{64}}{5},\\ {K_{14}}& {}= \frac{{(\nu - 3)}}{{7(\nu - 1)}}{\alpha _1} + \frac{{32}}{7},\,\\ {K_{15}}& {}= - \frac{{8(5\,\nu - 11)\,{\alpha _1}}}{{135(\nu - 1)}},\,{K_{16}} = \frac{{(21\,\nu - 43)\,{\alpha _1}}}{{154(\nu - 1)}}. \end{aligned}$$

Appendix 2

In Eq. (23) coefficients \({K_{21}} - {K_{24}}\) are:

$$\begin{aligned} {K_{21}}& {}= 9.5445-0.3656 {{\alpha _2}\,{V^2}},\nonumber \\ {K_{22}}& {}= 10.4140 + \frac{{-0.1511+0.3518\nu }}{(\nu - 1)},\,\nonumber \\ {K_{23}}& {}= - 3.5780 + \frac{{0.2940-0.55180 \nu }}{(\nu - 1)},\nonumber \\ {K_{24}}& {}= \frac{{(0.2150\nu - 0.1208)}}{{(\nu - 1)}}{\alpha _1}. \end{aligned}$$
(29)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saadatmand, M., Kook, J. Differences between plate theory and lumped element model in electrostatic analysis of one-sided and two-sided CMUTs with circular microplates. J Braz. Soc. Mech. Sci. Eng. 42, 468 (2020). https://doi.org/10.1007/s40430-020-02551-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-02551-8

Keywords

Navigation