Skip to main content
Log in

Preparation of elastic graphene aerogel and its adsorption of oil

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Graphene aerogel with good mechanical properties and elasticity were extensively investigated for oil adsorbent. Herein, polyvinyl alcohol-graphene aerogel was prepared using Pickering emulsion method with polyvinyl alcohol being used as crosslinking agent and ethylenediamine (EDA) was used as reductant. The droplets of the Pickering emulsion played the role of soft templates during the aerogel preparation, and the droplets size was adjusted by adding different amount of butanol. When the content of EDA increases from 0.5 to 0.9%, the volume of aerogel gradually increases and its outer surface becomes smoother. However, when the content of EDA reaches 1%, aerogel becomes smaller and the outer surface becomes coarser. It was found that the compression stress and EDA content are positively correlated by simple manual extrusion. Compression-rebound test and Young's modulus calculation results indicated that the mechanical properties of aerogel can be effectively influenced by pre-freezing process. The fold degree of the wall, the maximum stress and Young's modulus of the aerogel increase gradually when prolonging pre-freezing time. The polyvinyl alcohol-graphene aerogel prepared by pre-freezing for 48 h with a density of 5.07 mg cm−3, a porosity of up to 99.8%, and a pore volume of 196.84 cm3 g−1 achieved instantaneous adsorption of oil slick on water. And the pore occupancy reached 93.31% under the saturated adsorption state on pure oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. J. Huang, Z. Yan, Adsorption mechanism of oil by resilient graphene aerogels from oil−water emulsion. Langmuir 34(5), 1890–1898 (2018)

    CAS  PubMed  Google Scholar 

  2. Y. Wang, B. Wang, J. Wang, Y. Ren, C. Xuan, C. Liu, C. Shen, Superhydrophobic and superoleophilic porous reduced graphene oxide/polycarbonate monoliths for high-efficiency oil/water separation. J. Hazard Mater. 344, 849–856 (2018)

    CAS  PubMed  Google Scholar 

  3. H. Wang, E. Wang, Z. Liu, D. Gao, R. Yuan, L. Sun, Y. Zhu, A novel carbon nanotubes reinforced superhydrophobic and superoleophilic polyurethane sponge for selective oil-water separation through a chemical fabrication. J. Mater. Chem. A 3(1), 266–273 (2015)

    CAS  Google Scholar 

  4. J. Gu, P. Xiao, J. Chen, J. Zhang, Y. Huang, T. Chen, Janus polymer/carbon nanotube hybrid membranes for oil/water separation. ACS Appl. Mater. Interfaces 6(18), 16204–16209 (2014)

    CAS  PubMed  Google Scholar 

  5. M. Cheng, Y. Gao, X. Guo, Z. Shi, J.-F. Chen, F. Shi, Functionally integrated device for effective and facile oil spill cleanup. Langmuir 27(12), 7371–7375 (2011)

    CAS  PubMed  Google Scholar 

  6. R.P. Swannell, K. Lee, M. McDonagh, Field evaluations of marine oil spill bioremediation. Microbiol. Rev. 60(2), 342–365 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. S. Gao, X. Li, L. Li, X. Wei, A versatile biomass derived carbon material for oxygen reduction reaction, supercapacitors and oil/water separation. Nano Energy 33, 334–342 (2017)

    CAS  Google Scholar 

  8. J.A. Howarter, J.P. Youngblood, Amphiphile grafted membranes for the separation of oil-in-water dispersions. J. Colloid Interface Sci. 329(1), 127–132 (2009)

    CAS  PubMed  Google Scholar 

  9. M.O. Adebajo, R.L. Frost, J.T. Kloprogge, O. Carmody, S. Kokot, Porous materials for oil spill cleanup: a review of synthesis and absorbing properties. J. Porous Mater. 10(3), 159–170 (2003)

    CAS  Google Scholar 

  10. F. Ji, C. Li, X. Dong, Y. Li, D. Wang, Separation of oil from oily wastewater by sorption and coalescence technique using ethanol grafted polyacrylonitrile. J. Hazard. Mater. 164(2–3), 1346–1351 (2009)

    CAS  PubMed  Google Scholar 

  11. S. Hokkanen, A. Bhatnagar, M. Sillanpaa, A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Res. 91, 156–173 (2016)

    CAS  PubMed  Google Scholar 

  12. H. Sun, A. Li, Z. Zhu, W. Liang, X. Zhao, P. La, W. Deng, Superhydrophobic activated carbon-coated sponges for separation and absorption. Chemsuschem 6(6), 1057–1062 (2013)

    CAS  PubMed  Google Scholar 

  13. Q. Wen, J. Di, L. Jiang, J. Yu, R. Xu, Zeolite-coated mesh film for efficient oil-water separation. Chem. Sci. 4(2), 591–595 (2013)

    CAS  Google Scholar 

  14. C. Nam, H. Li, G. Zhang, T.C.M. Chung, Petrogel: new hydrocarbon (oil) absorbent based on polyolefin polymers. Macromolecules 49(15), 5427–5437 (2016)

    CAS  Google Scholar 

  15. M. Likon, M. Remskar, V. Ducman, F. Svegl, Populus seed fibers as a natural source for production of oil super absorbents. J. Environ. Manag. 114, 158–167 (2013)

    CAS  Google Scholar 

  16. H. Shi, D. Shi, L. Yin, Z. Yang, S. Luan, J. Gao, J. Zha, J. Yin, R.K.Y. Li, Ultrasonication assisted preparation of carbonaceous nanoparticles modified polyurethane foam with good conductivity and high oil absorption properties. Nanoscale 6(22), 13748–13753 (2014)

    CAS  PubMed  Google Scholar 

  17. T. Zhang, L. Kong, Y. Dai, X. Yue, J. Rong, F. Qiu, J. Pan, Enhanced oils and organic solvents absorption by polyurethane foams composites modified with MnO2 nanowires. Chem. Eng. J. 309, 7–14 (2017)

    CAS  Google Scholar 

  18. M. Pan, C. Shan, X. Zhang, Y. Zhang, C. Zhu, G. Gao, B. Pan, Environmentally friendly in situ regeneration of graphene aerogel as a model conductive adsorbent. Environ. Sci. Technol. 52(2), 739–746 (2018)

    CAS  PubMed  Google Scholar 

  19. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007)

    CAS  Google Scholar 

  20. Z.-Y. Yang, L.-J. Jin, G.-Q. Lu, Q.-Q. Xiao, Y.-X. Zhang, L. Jing, X.-X. Zhang, Y.-M. Yan, K.-N. Sun, Sponge-templated preparation of high surface area graphene with ultrahigh capacitive deionization performance. Adv. Funct. Mater. 24(25), 3917–3925 (2014)

    CAS  Google Scholar 

  21. Y. Chen, C. Ren, S. Ouyang, X. Hu, Q. Zhou, Mitigation in multiple effects of graphene oxide toxicity in zebrafish embryogenesis driven by humic acid. Environ. Sci. Technol. 49(16), 10147–10154 (2015)

    CAS  PubMed  Google Scholar 

  22. Y. Chen, X. Hu, J. Sun, Q. Zhou, Specific nanotoxicity of graphene oxide during zebrafish embryogenesis. Nanotoxicology 10(1), 42–52 (2016)

    CAS  PubMed  Google Scholar 

  23. J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu, J. Cai, C. Zhang, H. Gao, Y. Chen, Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47(3), 922–925 (2009)

    CAS  Google Scholar 

  24. G.Q. Tang, Z.G. Jiang, X.F. Li, H.B. Zhang, A. Dasari, Z.Z. Yu, Three dimensional graphene aerogels and their electrically conductive composites. Carbon 77, 592–599 (2014)

    CAS  Google Scholar 

  25. J. Ren, X. Zhang, D. Lu, B. Chang, J. Lin, S. Han, Fabrication of controllable graphene aerogel with superior adsorption capacity for organic solvents. Res. Chem. Intermed. 44(9), 5139–5152 (2018)

    CAS  Google Scholar 

  26. C. Xiang, C. Wang, R. Guo, J. Lan, S. Lin, S. Jiang, X. Lai, Y. Zhang, H. Xiao, Synthesis of carboxymethyl cellulose-reduced graphene oxide aerogel for efficient removal of organic liquids and dyes. J. Mater. Sci. 54(2), 1872–1883 (2018)

    Google Scholar 

  27. R.-P. Ren, Z. Wang, J. Ren, Y.-K. Lv, Highly compressible polyimide/graphene aerogel for efficient oil/water separation. J. Mater. Sci. 54(7), 5918–5926 (2018)

    Google Scholar 

  28. Y. Xu, K. Sheng, C. Li, G. Shi, Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4(7), 4324–4330 (2010)

    CAS  PubMed  Google Scholar 

  29. H. Bi, K. Yin, X. Xie, Y. Zhou, N. Wan, F. Xu, F. Banhart, L. Sun, R.S. Ruoff, Low temperature casting of graphene with high compressive strength. Adv. Mater. 24(37), 5124–5129 (2012)

    CAS  PubMed  Google Scholar 

  30. Y. Wu, N. Yi, L. Huang, T. Zhang, S. Fang, H. Chang, N. Li, J. Oh, J.A. Lee, M. Kozlov, A.C. Chipara, H. Terrones, P. Xiao, G. Long, Y. Huang, F. Zhang, L. Zhang, X. Lepro, C. Haines, M.D. Lima, N.P. Lopez, L.P. Rajukumar, A.L. Elias, S. Feng, S.J. Kim, N.T. Narayanan, P.M. Ajayan, M. Terrones, A. Aliev, P. Chu, Z. Zhang, R.H. Baughman, Y. Chen, Three-dimensionally bonded spongy graphene material with super compressive elasticity and near-zero Poisson's ratio. Nat. Commun. 6, 1–9 (2015)

    Google Scholar 

  31. Y. Bai, R.B. Rakhi, W. Chen, H.N. Alshareef, Effect of pH-induced chemical modification of hydrothermally reduced graphene oxide on supercapacitor performance. J. Power Sources 233, 313–319 (2013)

    CAS  Google Scholar 

  32. H. Bai, C. Li, X. Wang, G. Shi, A pH-sensitive graphene oxide composite hydrogel. Chem. Commun. 46(14), 2376–2378 (2010)

    CAS  Google Scholar 

  33. M. Chen, C. Zhang, X. Li, L. Zhang, Y. Ma, L. Zhang, X. Xu, F. Xia, W. Wang, J. Gao, A one-step method for reduction and self-assembling of graphene oxide into reduced graphene oxide aerogels. J. Mater. Chem. A 1(8), 2869–2877 (2013)

    CAS  Google Scholar 

  34. A. Krittayavathananon, P. Iamprasertkun, M. Sawangphruk, Enhancing the charge-storage performance of N-doped reduced graphene oxide aerogel supercapacitors by adsorption of the cationic electrolytes with single-stand deoxyribonucleic acid. Carbon 109, 314–320 (2016)

    CAS  Google Scholar 

  35. Y. Xu, Q. Wu, Y. Sun, H. Bai, G. Shi, Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels. ACS Nano 4(12), 7358–7362 (2010)

    CAS  PubMed  Google Scholar 

  36. X. Jiang, Y. Ma, J. Li, Q. Fan, W. Huang, Self-assembly of reduced graphene oxide into three-dimensional architecture by divalent ion linkage. J. Phys. Chem. C 114(51), 22462–22465 (2010)

    CAS  Google Scholar 

  37. P. Huang, W. Chen, L. Yan, An inorganic-organic double network hydrogel of graphene and polymer. Nanoscale 5(13), 6034–6039 (2013)

    CAS  PubMed  Google Scholar 

  38. H. Bai, K. Sheng, P. Zhang, C. Li, G. Shi, Graphene oxide/conducting polymer composite hydrogels. J. Mater. Chem. 21(46), 18653–18658 (2011)

    CAS  Google Scholar 

  39. Z. Sui, X. Zhang, Y. Lei, Y. Luo, Easy and green synthesis of reduced graphite oxide-based hydrogels. Carbon 49(13), 4314–4321 (2011)

    CAS  Google Scholar 

  40. H.-P. Cong, X.-C. Ren, P. Wang, S.-H. Yu, Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process. ACS Nano 6(3), 2693–2703 (2012)

    CAS  PubMed  Google Scholar 

  41. S. Pei, J. Zhao, J. Du, W. Ren, H.-M. Cheng, Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 48(15), 4466–4474 (2010)

    CAS  Google Scholar 

  42. H. Hu, Z. Zhao, W. Wan, Y. Gogotsi, J. Qiu, Ultralight and highly compressible graphene aerogels. Adv. Mater. 25(15), 2219–2223 (2013)

    CAS  PubMed  Google Scholar 

  43. J. Li, J. Li, H. Meng, S. Xie, B. Zhang, L. Li, H. Ma, J. Zhang, M. Yu, Ultra-light, compressible and fire-resistant graphene aerogel as a highly efficient and recyclable absorbent for organic liquids. J. Mater. Chem. A 2(9), 2934–2941 (2014)

    CAS  Google Scholar 

  44. X. Huang, K. Qian, J. Yang, J. Zhang, L. Li, C. Yu, D. Zhao, Functional nanoporous graphene foams with controlled pore sizes. Adv. Mater. 24(32), 4419–4423 (2012)

    CAS  PubMed  Google Scholar 

  45. Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, H.-M. Cheng, Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 10(6), 424–428 (2011)

    CAS  PubMed  Google Scholar 

  46. Y. Li, J. Chen, L. Huang, C. Li, J.-D. Hong, G. Shi, Highly compressible macroporous graphene monoliths via an improved hydrothermal process. Adv. Mater. 26(28), 4789 (2014)

    CAS  PubMed  Google Scholar 

  47. W. Lv, C. Zhang, Z. Li, Q.-H. Yang, Self-assembled 3D graphene monolith from solution. J. Phys. Chem. Lett. 6(4), 658–668 (2015)

    CAS  PubMed  Google Scholar 

  48. B. Shen, Y. Li, W. Zhai, W. Zheng, Compressible graphene-coated polymer foams with ultralow density for adjustable electromagnetic interference (EMI) shielding. ACS Appl. Mater. Interfaces 8(12), 8050–8057 (2016)

    CAS  PubMed  Google Scholar 

  49. G. Wang, Z. Zeng, X. Wu, T. Ren, J. Han, Q. Xue, Three-dimensional structured sponge with high oil wettability for the clean-up of oil contaminations and separation of oil-water mixtures. Polym. Chem. 5(20), 5942–5948 (2014)

    CAS  Google Scholar 

  50. C. Liu, J. Yang, Y. Tang, L. Yin, H. Tang, C. Li, Versatile fabrication of the magnetic polymer-based graphene foam and applications for oil-water separation. Colloids Surf. A 468, 10–16 (2015)

    CAS  Google Scholar 

  51. Y. Liu, J. Ma, T. Wu, X. Wang, G. Huang, Y. Liu, H. Qiu, Y. Li, W. Wang, J. Gao, Cost-effective reduced graphene oxide-coated polyurethane sponge as a highly efficient and reusable oil-absorbent. ACS Appl. Mater. Interfaces 5(20), 10018–10026 (2013)

    CAS  PubMed  Google Scholar 

  52. B. Yao, J. Chen, L. Huang, Q. Zhou, G. Shi, Base-induced liquid crystals of graphene oxide for preparing elastic graphene foams with long-range ordered microstructures. Adv. Mater. 28(8), 1623–1629 (2016)

    CAS  PubMed  Google Scholar 

  53. C. Zhu, T.Y.-J. Han, E.B. Duoss, A.M. Golobic, J.D. Kuntz, C.M. Spadaccini, M.A. Worsley, Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun. 6, 1–8 (2015)

    Google Scholar 

  54. M. Yang, N. Zhao, Y. Cui, W. Gao, Q. Zhao, C. Gao, H. Bai, T. Xie, Biomimetic architectured graphene aerogel with exceptional strength and resilience. ACS Nano 11(7), 6817–6824 (2017)

    CAS  PubMed  Google Scholar 

  55. X.S. Lv, D.H. Tian, Y.Y. Peng, J.X. Li, G.M. Jiang, Superhydrophobic magnetic reduced graphene oxide-decorated foam for efficient and repeatable oil-water separation. Appl. Surf. Sci. 466, 937–945 (2019)

    CAS  Google Scholar 

  56. C. Su, H. Yang, S. Song, B. Lu, R. Chen, A magnetic superhydrophilic/oleophobic sponge for continuous oil-water separation. Chem. Eng. J. 309, 366–373 (2017)

    CAS  Google Scholar 

  57. L. Zhang, H. Li, X. Lai, X. Su, T. Liang, X. Zeng, Thiolated graphene-based superhydrophobic sponges for oil-water separation. Chem. Eng. J. 316, 736–743 (2017)

    CAS  Google Scholar 

  58. S. Zhou, G. Hao, X. Zhou, W. Jiang, T. Wang, N. Zhang, L. Yu, One-pot synthesis of robust superhydrophobic, functionalized graphene/polyurethane sponge for effective continuous oil–water separation. Chem. Eng. J. 302, 155–162 (2016)

    CAS  Google Scholar 

  59. S. Diao, H. Liu, S. Chen, W. Xu, A. Yu, Oil adsorption performance of graphene aerogels. J. Mater. Sci. 55(11), 4578–4591 (2019)

    Google Scholar 

  60. S.A. Baskakov, R.A. Manzhos, A.S. Lobach, Y.V. Baskakova, A.V. Kulikov, V.M. Martynenko, F.O. Milovich, Y. Kumar, A. Michtchenko, E.N. Kabachkov, A.G. Krivenko, Y.M. Shulga, Properties of a granulated nitrogen-doped graphene oxide aerogel. J. Non-Cryst. Solids 498, 236–243 (2018)

    CAS  Google Scholar 

  61. J. Cao, Z. Wang, X. Yang, J. Tu, R. Wu, W. Wang, Green synthesis of amphipathic graphene aerogel constructed by using the framework of polymer-surfactant complex for water remediation. Appl. Surf. Sci. 444, 399–406 (2018)

    CAS  Google Scholar 

  62. O.C. Compton, D.A. Dikin, K.W. Putz, L.C. Brinson, S.T. Nguyen, Electrically conductive "alkylated" graphene paper via chemical reduction of amine-functionalized graphene oxide paper. Adv. Mater. 22(8), 892–+ (2010)

    PubMed  Google Scholar 

  63. H.-J. Shin, K.K. Kim, A. Benayad, S.-M. Yoon, H.K. Park, I.-S. Jung, M.H. Jin, H.-K. Jeong, J.M. Kim, J.-Y. Choi, Y.H. Lee, Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Funct. Mater. 19(12), 1987–1992 (2009)

    CAS  Google Scholar 

  64. S. Sun, L. Zhu, X. Liu, L. Wu, K. Dai, C. Liu, C. Shen, X. Guo, G. Zheng, Z. Guo, Superhydrophobic Shish-kebab membrane with self-cleaning and oil/water separation properties. ACS Sustain. Chem. Eng. 6(8), 9866–9875 (2018)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the financial supports of Natural Science Foundation of Shandong Province (ZR2017MB015) and PetroChina Innovation Foundation (2017D-5007-0601).

Author information

Authors and Affiliations

Authors

Contributions

Yuqin Bo, Anran yu, Huie Liu and Shuang Chen contributed to the conception of the study; Yuqin Bo, Anran yu and Huie Liu contributed significantly to analysis and manuscript preparation; Yuqin Bo, Anran yu and Wenlong Xu performed the data analyses and wrote the manuscript; Huie Liu, Shuang Chen, Wenlong Xu, Shuaidiao and Chaoqun zhang helped perform the analysis with constructive discussions.

Corresponding author

Correspondence to Huie Liu.

Ethics declarations

Conflict of interest:

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bo, Y., Yu, A., Liu, H. et al. Preparation of elastic graphene aerogel and its adsorption of oil. J Porous Mater 28, 39–56 (2021). https://doi.org/10.1007/s10934-020-00964-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-020-00964-3

Keywords

Navigation