Skip to main content

Advertisement

Log in

Application of nano-based systems for drug delivery and targeting: a review

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Over the last decades, magnificent progress in the field of nanopharmaceuticals mostly with sizes smaller than 100 nm has led to the development of novel delivery systems and brightened the hope of finding new approaches to combat threatening diseases including cancer. So far, numerous efforts have been made to develop appropriate delivery systems with favorable features such as acceptable toxicity profile, high cellular uptake, low immunogenicity, and stable physicochemical properties along with distribution of the therapeutic molecule specifically to the site of action, without affecting healthy organs and tissues. Non-viral delivery systems have always been suitable options for delivery purposes. Polymers, liposomes, and inorganic delivery systems are all of the available choices in non-viral delivery systems, with each possessing their own advantages and pitfalls. This current review presents the recent advances about the application of various non-viral nanocarriers in the delivery of diverse therapeutic agents especially in cancer treatment. Targeting ligands as an important part of designing targeted nanocarriers to the site of interest or intra-cellular environment and opportunities and challenges of nano-based systems for drug and gene delivery are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agashe HB, Dutta T, Garg M, Jain NK (2006) Investigations on the toxicological profile of functionalized fifth-generation poly (propylene imine) dendrimer. J Pharm Pharmacol 58(11):1491–1498

    CAS  Google Scholar 

  • Ahmed TA, Aljaeid BM (2016) Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Design Dev Ther 10:483

    CAS  Google Scholar 

  • Ai JW, Liu B, Liu WD (2017) Folic acid-tagged titanium dioxide nanoparticles for enhanced anticancer effect in osteosarcoma cells. Mater Sci Eng C Mater Biol Appl 76:1181–1187

    CAS  Google Scholar 

  • Alexander G, Tkachenko HX, Coleman D, Glomm W, Ryan J, Anderson SF MF, Feldheim DL (2003) Multifunctional gold nanoparticle-peptide complexes for nuclear targeting. Am Chem Soc 125(16):4700–4701

    Google Scholar 

  • Ali A, Ahmed S (2018) A review on chitosan and its nanocomposites in drug delivery. Int J Biol Macromol 109:273–286

    CAS  Google Scholar 

  • Alkilany AM, Thompson LB, Boulos SP, Sisco PN, Murphy CJ (2012) Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv Drug Deliv Rev 64(2):190–199

    CAS  Google Scholar 

  • Alley SC, Okeley NM, Senter PD (2010) Antibody-drug conjugates: targeted drug delivery for cancer. Curr Opin Chem Biol 14(4):529–537

    CAS  Google Scholar 

  • Almalik A, Donno R, Cadman CJ, Cellesi F, Day PJ, Tirelli N (2013) Hyaluronic acid-coated chitosan nanoparticles: Molecular weight-dependent effects on morphology and hyaluronic acid presentation. J Control Release 172(3):1142–1150

    CAS  Google Scholar 

  • Amadou KS, Camara EJL, Stowe DF (2010) Potential therapeutic benefits of strategies directed to mitochondria. Antioxid Redox Signal 13(3):279–347

    Google Scholar 

  • Anandhakumar S, Mahalakshmi V, Raichur AM (2012) Silver nanoparticles modified nanocapsules for ultrasonically activated drug delivery. Mater Sci Eng C 32(8):2349–2355

    CAS  Google Scholar 

  • Ansari M, Bigham A, Hassanzadeh-Tabrizi SA, Abbastabar AH (2017) Synthesis and characterization of Cu 0.3 Zn 0.5 Mg 0.2 Fe 2 O 4 nanoparticles as a magnetic drug delivery system. J Magn Magn Mater 439:67–75

    CAS  Google Scholar 

  • Araujo RS, Silveira ALM, de Sales ESEL, Freire RH, de Souza CM, Reis DC et al (2017) Intestinal toxicity evaluation of long-circulating and pH-sensitive liposomes loaded with cisplatin. Eur J Pharm Sci 106:142–151

    CAS  Google Scholar 

  • Aungst BJ (2000) Intestinal permeation enhancers. J Pharm Sci 89:429–442

    CAS  Google Scholar 

  • Awad NK, Edwards SL, Morsi YS (2017) A review of TiO2 NTs on Ti metal: electrochemical synthesis, functionalization and potential use as bone implants. Mater Sci Eng C Mater Biol Appl 76:1401–1412

    CAS  Google Scholar 

  • Bahadar H, Maqbool F, Niaz K, Abdollahi M (2016) Toxicity of nanoparticles and an overview of current experimental models. Iran Biomed J 20(1):1

    Google Scholar 

  • Baradaran Eftekhari R, Maghsoudnia N, Samimi S, Abedin DF (2019) Application of chitosan in oral drug delivery. In: Jana S, Jana S (eds) Functional chitosan: drug delivery and biomedical applications. Springer Singapore, Singapore, pp 43–73

    Google Scholar 

  • Baradaran Eftekhari R, Maghsoudnia N, Dorkoosh FA. Chloroquine: a brand-new scenario for an old drug. Taylor & Francis; 2020

  • Biffi S, Voltan R, Bortot B, Zauli G, Secchiero P (2019) Actively targeted nanocarriers for drug delivery to cancer cells. Expert Opin Drug Deliv 16(5):481–496

    CAS  Google Scholar 

  • Biswas S, Dodwadkar NS, Piroyan A, Torchilin VP (2012) Surface conjugation of triphenylphosphonium to target poly(amidoamine) dendrimers to mitochondria. Biomaterials. 33(18):4773–4782

    CAS  Google Scholar 

  • Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38(6):1759–1782

    CAS  Google Scholar 

  • Brannon-Peppas L, Blanchette JO (2012) Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 64:206–212

    Google Scholar 

  • Bugnicourt L, Ladaviere C (2017) A close collaboration of chitosan with lipid colloidal carriers for drug delivery applications. J Control Release 256:121–140

    CAS  Google Scholar 

  • Caoduro C, Hervouet E, Girard-Thernier C, Gharbi T, Boulahdour H, Delage-Mourroux R et al (2017) Carbon nanotubes as gene carriers: focus on internalization pathways related to functionalization and properties. Acta Biomater 49:36–44

    CAS  Google Scholar 

  • Cea RJ (1996) Preliminary biological evaluation of polyamidoamine (PAMAM) starburst dendrimers. J Biomed Mater Res 30:53–65

    Google Scholar 

  • Chamberlain GR, Tulumello DV, Kelley SO (2013) Targeted delivery of doxorubicin to mitochondria. ACS Chem Biol 8:1389–1395

    CAS  Google Scholar 

  • Champion JA, Mitragotri S (2006) Role of target geometry in phagocytosis. Proc Natl Acad Sci 103(13):4930–4934

    CAS  Google Scholar 

  • Chauhan G, Chopra V, Tyagi A, Rath G, Sharma RK, Goyal AK (2017) "Gold nanoparticles composite-folic acid conjugated graphene oxide nanohybrids" for targeted chemo-thermal cancer ablation: in vitro screening and in vivo studies. Eur J Pharm Sci 96:351–361

    CAS  Google Scholar 

  • Chen J, Guo Z, Wang HB, Gong M, Kong XK, Xia P et al (2013) Multifunctional Fe3O4@C@Ag hybrid nanoparticles as dual modal imaging probes and near-infrared light-responsive drug delivery platform. Biomaterials. 34(2):571–581

    Google Scholar 

  • Chen JX, Wang M, Tian HH, Chen JH (2015) Hyaluronic acid and polyethylenimine self-assembled polyion complexes as pH-sensitive drug carrier for cancer therapy. Colloids Surf B: Biointerfaces 134:81–87

    CAS  Google Scholar 

  • Chen ZP, Li M, Zhang LJ, He JY, Wu L, Xiao YY et al (2016) Mitochondria-targeted drug delivery system for cancer treatment. J Drug Target 24(6):492–502

    CAS  Google Scholar 

  • Chen X, Sun H, Hu J, Han X, Liu H, Hu Y (2017a) Transferrin gated mesoporous silica nanoparticles for redox-responsive and targeted drug delivery. Colloids Surf B: Biointerfaces 152:77–84

    CAS  Google Scholar 

  • Chen K, Guo L, Zhang J, Chen Q, Wang K, Li C et al (2017b) A gene delivery system containing nuclear localization signal: Increased nucleus import and transfection efficiency with the assistance of RanGAP1. Acta Biomater 48:215–226

    CAS  Google Scholar 

  • Chen P, Liu Y, Zhao J, Pang X, Zhang P, Hou X et al (2018a) The synthesis of amphiphilic polyethyleneimine/calcium phosphate composites for bispecific T-cell engager based immunogene therapy. Biomaterials science 6(3):633–641

    CAS  Google Scholar 

  • Chen C, Li G, Zhang L, Huang X, Cheng D, Wu S et al (2018b) MicroRNA delivery mediated by PEGylated polyethylenimine for prostate cancer therapy. Open Chemistry 16(1):1257–1267

    CAS  Google Scholar 

  • Chereddy KK, Her CH, Comune M, Moia C, Lopes A, Porporato PE et al (2014) PLGA nanoparticles loaded with host defense peptide LL37 promote wound healing. J Control Release 194:138–147

    CAS  Google Scholar 

  • Chi Y, Yin X, Sun K, Feng S, Liu J, Chen D et al (2017) Redox-sensitive and hyaluronic acid functionalized liposomes for cytoplasmic drug delivery to osteosarcoma in animal models. J Control Release 261:113–125

    CAS  Google Scholar 

  • Cho HJ, Chung M, Shim MS (2015) Engineered photo-responsive materials for near-infrared-triggered drug delivery. J Ind Eng Chem 31:15–25

    CAS  Google Scholar 

  • Dai L, Si C-L (2017) Cellulose- graft -poly(methyl methacrylate) nanoparticles with high biocompatibility for hydrophobic anti-cancer drug delivery. Mater Lett 207:213–216

    CAS  Google Scholar 

  • Danhier F, Lecouturier N, Vroman B, Jérôme C, Marchand-Brynaert J, Feron O et al (2009) Paclitaxel-loaded PEGylated PLGA-based nanoparticles: in vitro and in vivo evaluation. J Control Release 133(1):11–17

    CAS  Google Scholar 

  • David A, Jans CKC, Huebner S (1998) Signals mediating nuclear targeting and their regulation: application in drug delivery John Wiley & Sons, Inc. Med Res Rev 18(4):189–223

    Google Scholar 

  • De Beuckelaer A, Pollard C, Van Lint S, Roose K, Van Hoecke L, Naessens T et al (2016) Type I interferons interfere with the capacity of mRNA lipoplex vaccines to elicit cytolytic t cell responses. Mol Ther 24(11):2012–2020

    Google Scholar 

  • de Groot AM, Du G, Monkare J, Platteel ACM, Broere F, Bouwstra JA et al (2017) Hollow microneedle-mediated intradermal delivery of model vaccine antigen-loaded PLGA nanoparticles elicits protective T cell-mediated immunity to an intracellular bacterium. J Control Release 266:27–35

    Google Scholar 

  • de la Rica R, Aili D, Stevens MM (2012) Enzyme-responsive nanoparticles for drug release and diagnostics. Adv Drug Deliv Rev 64(11):967–978

    Google Scholar 

  • de Villiers MM, Lvov YM (2011) Layer-by-layer self-assembled nanoshells for drug delivery. Adv Drug Deliv Rev 63(9):699–700

    Google Scholar 

  • des Rieux A, Pourcelle V, Cani PD, Marchand-Brynaert J, Preat V (2013) Targeted nanoparticles with novel non-peptidic ligands for oral delivery. Adv Drug Deliv Rev 65(6):833–844

    Google Scholar 

  • Devulapally R, Lee T, Barghava-Shah A, Sekar TV, Foygel K, Bachawal SV et al (2018) Ultrasound-guided delivery of thymidine kinase–nitroreductase dual therapeutic genes by PEGylated-PLGA/PEI nanoparticles for enhanced triple negative breast cancer therapy. Nanomedicine. 13(9):1051–1066

    CAS  Google Scholar 

  • Dharap SS, Wang Y, Chandna P, Khandare JJ, Qiu B, Gunaseelan S et al (2005) Tumor-specific targeting of an anticancer drug delivery system by LHRH peptide. Proc Natl Acad Sci U S A 102(36):12962–12967

    CAS  Google Scholar 

  • Dixit N, Vaibhav K, Pandey RS, Jain UK, Katare OP, Katyal A et al (2015) Improved cisplatin delivery in cervical cancer cells by utilizing folate-grafted non-aggregated gelatin nanoparticles. Biomed Pharmacother 69:1–10

    CAS  Google Scholar 

  • Dmour I, Taha MO (2017) Novel nanoparticles based on chitosan-dicarboxylate conjugates via tandem ionotropic/covalent crosslinking with tripolyphosphate and subsequent evaluation as drug delivery vehicles. Int J Pharm 529(1–2):15–31

    CAS  Google Scholar 

  • Dong DW, Tong SW, Qi XR (2013) Comparative studies of polyethylenimine-doxorubicin conjugates with pH-sensitive and pH-insensitive linkers. J Biomed Mater Res A 101(5):1336–1344

    Google Scholar 

  • Dosio F, Arpicco S, Stella B, Fattal E (2016) Hyaluronic acid for anticancer drug and nucleic acid delivery. Adv Drug Deliv Rev 97:204–236

    CAS  Google Scholar 

  • Dou Y, Hynynen K, Allen C (2017) To heat or not to heat: Challenges with clinical translation of thermosensitive liposomes. J Control Release 249:63–73

    CAS  Google Scholar 

  • Duncan R, Izzo L (2005) Dendrimer biocompatibility and toxicity. Adv Drug Deliv Rev 57(15):2215–2237

    CAS  Google Scholar 

  • Dutta T, Jain NK (2007) Targeting potential and anti-HIV activity of lamivudine loaded mannosylated poly (propyleneimine) dendrimer. Biochim Biophys Acta 1770(4):681–686

    CAS  Google Scholar 

  • Dutta T, Agashe HB, Garg M, Balakrishnan P, Kabra M, Jain NK (2007) Poly (propyleneimine) dendrimer based nanocontainers for targeting of efavirenz to human monocytes/macrophages in vitro. J Drug Target 15(1):89–98

    CAS  Google Scholar 

  • Eftekhari RB, Maghsoudnia N, Samimi S, Zamzami A, Dorkoosh FA (2019) Co-delivery nanosystems for cancer treatment: a review. Pharm Nanotechnol 7(2):90–112

    CAS  Google Scholar 

  • Einmahl S, Behar-Cohen F, Tabatabay C, Savoldelli M, D'Hermies F, Chauvaud D et al (2000) A viscous bioerodible poly (ortho ester) as a new biomaterial for intraocular application. J Biomed Mater Res 50(4):566–573

    CAS  Google Scholar 

  • El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM (2011) Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45(1):283–287

    Google Scholar 

  • Elgadir MA, Uddin MS, Ferdosh S, Adam A, Chowdhury AJK, Sarker MZI (2015) Impact of chitosan composites and chitosan nanoparticle composites on various drug delivery systems: a review. J Food Drug Anal 23(4):619–629

    CAS  Google Scholar 

  • Eloy JO, Petrilli R, Chesca DL, Saggioro FP, Lee RJ, Marchetti JM (2017) Anti-HER2 immunoliposomes for co-delivery of paclitaxel and rapamycin for breast cancer therapy. Eur J Pharm Biopharm 115:159–167

    CAS  Google Scholar 

  • England RM, Hare JI, Kemmitt PD, Treacher KE, Waring MJ, Barry ST et al (2016) Enhanced cytocompatibility and functional group content of poly(l-lysine) dendrimers by grafting with poly(oxazolines). Polym Chem 7(28):4609–4617

    CAS  Google Scholar 

  • Ensafi AA, Khoddami E, Nabiyan A, Rezaei B (2017) Study the role of poly(diethyl aminoethyl methacrylate) as a modified and grafted shell for TiO 2 and ZnO nanoparticles, application in flutamide delivery. React Funct Polym 116:1–8

    CAS  Google Scholar 

  • Esfand R, Tomalia DA (2001) Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. DDT. 6:427–436

    CAS  Google Scholar 

  • Fahmy TM, Fong PM, Goyal A, Saltzman WM (2005) Targeted for drug delivery. Mater Today 8(8):18–26

    Google Scholar 

  • Fan Y, Chen C, Huang Y, Zhang F, Lin G (2017) Study of the pH-sensitive mechanism of tumor-targeting liposomes. Colloids Surf B: Biointerfaces 151:19–25

    CAS  Google Scholar 

  • Feng M, Lee D, Li P (2006) Intracellular uptake and release of poly(ethyleneimine)-co-poly(methyl methacrylate) nanoparticle/pDNA complexes for gene delivery. Int J Pharm 311(1–2):209–214

    CAS  Google Scholar 

  • Flak D, Yate L, Nowaczyk G, Jurga S (2017) Hybrid ZnPc@TiO2 nanostructures for targeted photodynamic therapy, bioimaging and doxorubicin delivery. Mater Sci Eng C Mater Biol Appl 78:1072–1085

    CAS  Google Scholar 

  • Florea BI, Meaney C, Junginger HE, Borchard G (2002) Transfection efficiency and toxicity of polyethylenimine in differentiated Calu-3 and nondifferentiated COS-1 cell cultures. AAPS PharmSciTech 4(3):1–11

    Google Scholar 

  • Fonseca SB, Pereira MP, Mourtada R, Gronda M, Horton KL, Hurren R, Minden MD, Schimmer AD, Kelley SO (2011) Rerouting chlorambucil to mitochondria combats drug deactivation and resistance in cancer cells. Chem Biol 18:445–453

    CAS  Google Scholar 

  • Freimann K, Arukuusk P, Kurrikoff K, Pärnaste L, Raid R, Piirsoo A et al (2018) Formulation of stable and homogeneous cell-penetrating peptide NF55 nanoparticles for efficient gene delivery in vivo. Mol Ther - Nucl Acids 10:28–35

    CAS  Google Scholar 

  • Furgeson DY, Yockman JW, Janat MM, Kim SW (2004) Tumor efficacy and biodistribution of linear polyethylenimine-cholesterol/DNA complexes. Mol Ther 9(6):837–845

    CAS  Google Scholar 

  • Ghaffari SB, Sarrafzadeh MH, Fakhroueian Z, Shahriari S, Khorramizadeh MR (2017) Functionalization of ZnO nanoparticles by 3-mercaptopropionic acid for aqueous curcumin delivery: Synthesis, characterization, and anticancer assessment. Mater Sci Eng C Mater Biol Appl 79:465–472

    CAS  Google Scholar 

  • Ghanghoria R, Kesharwani P, Tekade RK, Jain NK (2016) Targeting luteinizing hormone-releasing hormone: a potential therapeutics to treat gynecological and other cancers. J Control Release 269:277–301

    Google Scholar 

  • Ghosh P, Han G, De M, Kim CK, Rotello VM (2008) Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 60(11):1307–1315

    CAS  Google Scholar 

  • Giansanti L, Mauceri A, Galantini L, Altieri B, Piozzi A, Mancini G (2016) Glucosylated pH-sensitive liposomes as potential drug delivery systems. Chem Phys Lipids 200:113–119

    CAS  Google Scholar 

  • Gillies E, Frechet J (2005) Dendrimers and dendritic polymers in drug delivery. Drug Discov Today 10(1):35–43

    CAS  Google Scholar 

  • Ginn SL, Alexander IE, Edelstein ML, Abedi MR, Wixon J (2013) Gene therapy clinical trials worldwide to 2012 - an update. J Gene Med 15(2):65–77

    CAS  Google Scholar 

  • Goodman CM, McCusker CD, Yilmaz T, Rotello VM (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15(4):897–900

    CAS  Google Scholar 

  • Gormally MV, McKibben RK, Johal MS, Selassie CR (2009) Controlling tyrosinase activity on charged polyelectrolyte surfaces: a QCM-D analysis. Langmuir. 25(17):10014–10019

    CAS  Google Scholar 

  • Grossen P, Witzigmann D, Sieber S, Huwyler J (2017) PEG-PCL-based nanomedicines: a biodegradable drug delivery system and its application. J Control Release 260:46–60

    CAS  Google Scholar 

  • Gu L, He X, Wu Z (2014) Mesoporous Fe3O4/hydroxyapatite composite for targeted drug delivery. Mater Res Bull 59:65–68

    CAS  Google Scholar 

  • Guo Q, Li C, Zhou W, Chen X, Zhang Y, Lu Y et al (2019) GLUT1-mediated effective anti-miRNA21 pompon for cancer therapy. Acta Pharm Sin B 9(4):832–842

    Google Scholar 

  • Gusachenko Simonova O, Kravchuk Y, Konevets D, Silnikov V, Vlassov VV, Zenkova MA (2009) Transfection efficiency of 25-kDa PEI-cholesterol conjugates with different levels of modification. J Biomater Sci Polym Ed 20(7–8):1091–1110

    Google Scholar 

  • Hadipour Moghaddam SP, Saikia J, Yazdimamaghani M, Ghandehari H (2017) Redox-Responsive polysulfide-based biodegradable organosilica nanoparticles for delivery of bioactive agents. ACS Appl Mater Interfaces 9(25):21133–21146

    CAS  Google Scholar 

  • Haensler JaS FC Jr (1993) Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug Chem 4:372–379

    Google Scholar 

  • Han J, Na K (2019) Transfection of the TRAIL gene into human mesenchymal stem cells using biocompatible polyethyleneimine carbon dots for cancer gene therapy. J Ind Eng Chem 80:722–728

    CAS  Google Scholar 

  • Han HS, Lee J, Kim HR, Chae SY, Kim M, Saravanakumar G et al (2013) Robust PEGylated hyaluronic acid nanoparticles as the carrier of doxorubicin: mineralization and its effect on tumor targetability in vivo. J Control Release 168(2):105–114

    CAS  Google Scholar 

  • Hao Y, Gao Y, Wu Y, An C (2019) The AIB1siRNA-loaded hyaluronic acid-assembled PEI/heparin/Ca2+ nanocomplex as a novel therapeutic strategy in lung cancer treatment. Int J Mol Med 43(2):861–867

    CAS  Google Scholar 

  • Hazekawa M, Nishinakagawa T, Kawakubo-Yasukochi T, Nakashima M (2019) Glypican-3 gene silencing for ovarian cancer using siRNA-PLGA hybrid micelles in a murine peritoneal dissemination model. J Pharmacol Sci 139(3):231–239

    CAS  Google Scholar 

  • Heo K, Min SW, Sung HJ, Kim HG, Kim HJ, Kim YH et al (2016) An aptamer-antibody complex (oligobody) as a novel delivery platform for targeted cancer therapies. J Control Release 229:1–9

    CAS  Google Scholar 

  • Her S, Jaffray DA, Allen C (2017) Gold nanoparticles for applications in cancer radiotherapy: mechanisms and recent advancements. Adv Drug Deliv Rev 109:84–101

    CAS  Google Scholar 

  • Howard KA, Rahbek UL, Liu X, Damgaard CK, Glud SZ, Andersen MO et al (2006) RNA interference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system. Mol Ther 14(4):476–484

    CAS  Google Scholar 

  • Hsu H-L, Chen J-P (2017) Preparation of thermosensitive magnetic liposome encapsulated recombinant tissue plasminogen activator for targeted thrombolysis. J Magn Magn Mater 427:188–194

    CAS  Google Scholar 

  • Hu Y, Xie J, Tong YW, Wang C-H (2007) Effect of PEG conformation and particle size on the cellular uptake efficiency of nanoparticles with the HepG2 cells. J Control Release 118(1):7–17

    CAS  Google Scholar 

  • Huang H-C, Barua S, Sharma G, Dey SK, Rege K (2011) Inorganic nanoparticles for cancer imaging and therapy. J Control Release 155(3):344–357

    CAS  Google Scholar 

  • Huang J, Gou G, Xue B, Yan Q, Sun Y, Dong LE (2013) Preparation and characterization of "dextran-magnetic layered double hydroxide-fluorouracil" targeted liposomes. Int J Pharm 450(1–2):323–330

    CAS  Google Scholar 

  • Huo S, Jin S, Ma X, Xue X, Yang K, Kumar A et al (2014) Ultrasmall gold nanoparticles as carriers for nucleus-based gene therapy due to size-dependent nuclear entry. ACS Nano 8(6):5852–5862

    CAS  Google Scholar 

  • Iaboni M, Russo V, Fontanella R, Roscigno G, Fiore D, Donnarumma E et al (2016) Aptamer-miRNA-212 conjugate sensitizes NSCLC cells to TRAIL. Mol Ther Nucleic Acids 5:e289

    CAS  Google Scholar 

  • Iannazzo D, Pistone A, Salamo M, Galvagno S, Romeo R, Giofre SV et al (2017) Graphene quantum dots for cancer targeted drug delivery. Int J Pharm 518(1–2):185–192

    CAS  Google Scholar 

  • Ishida T, Ichihara M, Wang X, Kiwada H (2006) Spleen plays an important role in the induction of accelerated blood clearance of PEGylated liposomes. J Control Release 115(3):243–250

    CAS  Google Scholar 

  • Ito T, Iida-Tanaka N, Koyama Y (2008) Efficient in vivo gene transfection by stable DNA/PEI complexes coated by hyaluronic acid. J Drug Target 16(4):276–281

    CAS  Google Scholar 

  • Jaimes-Aguirre L, Morales-Avila E, Ocampo-Garcia BE, Medina LA, Lopez-Tellez G, Gibbens-Bandala BV et al (2017) Biodegradable poly(D,L-lactide-co-glycolide)/poly(L-gamma-glutamic acid) nanoparticles conjugated to folic acid for targeted delivery of doxorubicin. Mater Sci Eng C Mater Biol Appl 76:743–751

    CAS  Google Scholar 

  • Jain S, Edwards M, Spensor L. Advances and challenges in the development of drug delivery systems-a European perspective. Regul Rapp. 2016;13

  • Jain K, Mehra NK, Jain VK, Jain NK. (2020). IPN Dendrimers in drug delivery. Interpenetrating Polymer Network: Biomedical Applications: Springer p. 143–81

  • Janagam DR, Wu L, Lowe TL (2017) Nanoparticles for drug delivery to the anterior segment of the eye. Adv Drug Deliv Rev 122:31–64

    CAS  Google Scholar 

  • Jaracz S, Chen J, Kuznetsova LV, Ojima I (2005) Recent advances in tumor-targeting anticancer drug conjugates. Bioorg Med Chem 13(17):5043–5054

    CAS  Google Scholar 

  • Jenkins SI, Weinberg D, Al-Shakli AF, Fernandes AR, Yiu HH, Telling ND et al (2016) 'Stealth' nanoparticles evade neural immune cells but also evade major brain cell populations: Implications for PEG-based neurotherapeutics. J Control Release 224:136–145

    CAS  Google Scholar 

  • Jennifer Sudimack BA, Jennifer Sudimack BA, Lee RJ: Advanced drug delivery reviews; 1999. DF-1.6%âãÏÓ 593 0 obj <</Linearized 1/L 447076/O 595/E 35872/N 9/T 6392/H [ 510 440]>> endobj 614 0 obj <</DecodeParms<</Columns 4/Predictor 12>>/Filter/FlateDecode/ID[<FD3BCC17BBA0F5DD1E5769EE281C2D31><943441E0BA42AE4CBFADE111669A159E>]/Index[593 46]/Info 592 0 R/Length 101/Prev 446393/Root 594 0 R/Size 639/Type/XRef/W[1 2 1]>>stream hÞbbd “b”^ $ Ó@Ä ÁV s , @‚ƒ DT p

  • Jensen LB, Griger J, Naeye B et al (2012) Comparison of polymeric siRNA nanocarriers in amurine LPS-activated macrophage cell line: gene silencing, toxicity and off-target gene expression. Pharm Res 29(3):669–682

    CAS  Google Scholar 

  • Jevprasesphant R, Penny J, Attwood D, McKeown NB, D'Emanuele A (2003) Engineering of dendrimer surfaces to enhance transepithelial transport and reduce cytotoxicity. Pharm Res 20:1543–1550

    CAS  Google Scholar 

  • Jonathan D, Eichman AUB, Jolanta F, Kukowska-Latallo JF, Baker JR Jr (2000) The use of PAMAM dendrimers in the efficient transfer of genetic material into cells. PSTT. 3:232–245

    Google Scholar 

  • Kamalakannan R, Mani G, Muthusamy P, Susaimanickam AA, Kim K (2017) Caffeine-loaded gold nanoparticles conjugated with PLA-PEG-PLA copolymer for in vitro cytotoxicity and anti-inflammatory activity. J Ind Eng Chem 51:113–121

    CAS  Google Scholar 

  • Kamari Y, Ghiaci P, Ghiaci M (2017) Study on montmorillonite/insulin/TiO2 hybrid nanocomposite as a new oral drug-delivery system. Mater Sci Eng C Mater Biol Appl 75:822–828

    CAS  Google Scholar 

  • Kang BH, Plescia J, Song HY, Meli M, Colombo G, Beebe K et al (2009) Combinatorial drug design targeting multiple cancer signaling networks controlled by mitochondrial Hsp90. J Clin Invest 119(3):454–464

    CAS  Google Scholar 

  • Kanwar JR, Roy K, Kanwar RK (2011) Chimeric aptamers in cancer cell-targeted drug delivery. Crit Rev Biochem Mol Biol 46(6):459–477

    CAS  Google Scholar 

  • Kapoor DN, Bhatia A, Kaur R, Sharma R, Kaur G, Dhawan S (2015) PLGA: a unique polymer for drug delivery. Ther Deliv 6(1):41–58

    CAS  Google Scholar 

  • Kaur D, Jain K, Mehra NK, Kesharwani P, Jain NK (2016) A review on comparative study of PPI and PAMAM dendrimers. J Nanopart Res 18(6):146

    Google Scholar 

  • Kesharwani P, Jain K, Jain NK (2014) Dendrimer as nanocarrier for drug delivery. Prog Polym Sci 39(2):268–307

    CAS  Google Scholar 

  • Kesharwani P, Banerjee S, Gupta U, Mohd Amin MCI, Padhye S, Sarkar FH et al (2015) PAMAM dendrimers as promising nanocarriers for RNAi therapeutics. Mater Today 18(10):565–572

    CAS  Google Scholar 

  • Khuloud T, Al-Jamal KT, Al-Jamal WT, Wang JT, Rubio N, Buddle J, Gathercole D, Zloh M, Kostarelos K (2013) Cationic poly-L-lysine dendrimer complexes doxorubicin and delays tumor growth in vitro and in vivo. Am Chem Soc 7(3):1905–1917

    Google Scholar 

  • Kievit FM, Veiseh O, Bhattarai N, Fang C, Gunn JW, Lee D et al (2009) PEI-PEG-chitosan copolymer coated iron oxide nanoparticles for safe gene delivery: synthesis, complexation, and transfection. Adv Funct Mater 19(14):2244–2251

    CAS  Google Scholar 

  • Kim EJY, Choi H, Yang J, Suh JS, Huh YM, Kim K, Haam S (2010) Prostate cancer cell death produced by the co-delivery of Bcl-xL shRNA and doxorubicin using an aptamer-conjugated polyplex. Biomaterials 31:4592–4599

    CAS  Google Scholar 

  • Kim CS, Tonga GY, Solfiell D, Rotello VM (2013) Inorganic nanosystems for therapeutic delivery: status and prospects. Adv Drug Deliv Rev 65(1):93–99

    CAS  Google Scholar 

  • Kojima N, Kawauchi Y, Ishii M (2011) Development of novel carbohydrate-coated liposome-based vaccines. Trends Glycosci Glycotechnol 23(134):257–271

    CAS  Google Scholar 

  • Kokuryo D, Nakashima S, Ozaki F, Yuba E, Chuang KH, Aoshima S et al (2015) Evaluation of thermo-triggered drug release in intramuscular-transplanted tumors using thermosensitive polymer-modified liposomes and MRI. Nanomedicine. 11(1):229–238

    CAS  Google Scholar 

  • Korytowski WWK, Pabisz P, Schmitt JC, Girotti AW (2014) Macrophage mitochondrial damage from StAR transport of 7-hydroperoxycholesterol: implications for oxidative stress-impaired reverse cholesterol transport. FEBS Lett 588:65–70

    CAS  Google Scholar 

  • Kumar KV (2012) Targeted delivery of nanomedicines. ISRN Pharmacol 2012:571394

    Google Scholar 

  • Law B, Quinti L, Choi Y, Weissleder R, Tung CH (2006) A mitochondrial targeted fusion peptide exhibits remarkable cytotoxicity. Mol Cancer Ther 5(8):1944–1949

    CAS  Google Scholar 

  • Lawrence L., Garber A EMH Jr, Richard G. Starr Jr. Measuring consumer response to food products. Food Quality and Preference. 2003

  • Lee BK, Yun Y, Park K (2016) PLA micro- and nano-particles. Adv Drug Deliv Rev 107:176–191

    CAS  Google Scholar 

  • Lepenies B, Lee J, Sonkaria S (2013) Targeting C-type lectin receptors with multivalent carbohydrate ligands. Adv Drug Deliv Rev 65(9):1271–1281

    CAS  Google Scholar 

  • Li X, Ding L, Xu Y, Wang Y, Ping Q (2009) Targeted delivery of doxorubicin using stealth liposomes modified with transferrin. Int J Pharm 373(1–2):116–123

    CAS  Google Scholar 

  • Li J, Cheng X, Chen Y, He W, Ni L, Xiong P et al (2016) Vitamin E TPGS modified liposomes enhance cellular uptake and targeted delivery of luteolin: an in vivo/in vitro evaluation. Int J Pharm 512(1):262–272

    CAS  Google Scholar 

  • Liang B, He ML, Xiao ZP, Li Y, Chan CY, Kung HF et al (2008) Synthesis and characterization of folate-PEG-grafted-hyperbranched-PEI for tumor-targeted gene delivery. Biochem Biophys Res Commun 367(4):874–880

    CAS  Google Scholar 

  • Lin J, Chen X, Huang P (2016) Graphene-based nanomaterials for bioimaging. Adv Drug Deliv Rev 105(Pt B):242–254

    CAS  Google Scholar 

  • Lin T, Yuan A, Zhao X, Lian H, Zhuang J, Chen W et al (2017) Self-assembled tumor-targeting hyaluronic acid nanoparticles for photothermal ablation in orthotopic bladder cancer. Acta Biomater 53:427–438

    CAS  Google Scholar 

  • Liu X, Huang G (2013) Formation strategies, mechanism of intracellular delivery and potential clinical applications of pH-sensitive liposomes. Asian J Pharm Sci 8(6):319–328

    Google Scholar 

  • Liu J, Zhou J, Luo Y (2012) SiRNA delivery systems based on neutral cross-linked dendrimers. Bioconjug Chem 23(2):174–183

    CAS  Google Scholar 

  • Liu D, Yang F, Xiong F, Gu N (2016a) The smart drug delivery system and its clinical potential. Theranostics. 6(9):1306

    CAS  Google Scholar 

  • Liu M, Zhang J, Zhu X, Shan W, Li L, Zhong J et al (2016b) Efficient mucus permeation and tight junction opening by dissociable "mucus-inert" agent coated trimethyl chitosan nanoparticles for oral insulin delivery. J Control Release 222:67–77

    CAS  Google Scholar 

  • Liu Y, Zhang X, Liu Z, Wang L, Luo L, Wang M et al (2017) Gold nanoshell-based betulinic acid liposomes for synergistic chemo-photothermal therapy. Nanomedicine. 13(6):1891–1900

    CAS  Google Scholar 

  • Loureiro JA, Gomes B, Fricker G, Cardoso I, Ribeiro CA, Gaiteiro C et al (2015) Dual ligand immunoliposomes for drug delivery to the brain. Colloids Surf B: Biointerfaces 134:213–219

    CAS  Google Scholar 

  • Lu P, Bruno BJ, Rabenau M, Lim CS (2016) Delivery of drugs and macromolecules to the mitochondria for cancer therapy. J Control Release 240:38–51

    CAS  Google Scholar 

  • Luo MAM (2013) Mechanisms of altered Ca2+ handling in heart failure. Circ Res 113:690–708

    CAS  Google Scholar 

  • Ma P, Zhang X, Ni L, Li J, Zhang F, Wang Z et al (2015) Targeted delivery of polyamidoamine-paclitaxel conjugate functionalized with anti-human epidermal growth factor receptor 2 trastuzumab. Int J Nanomedicine 10:2173–2190

    CAS  Google Scholar 

  • Ma X, Feng H, Liang C, Liu X, Zeng F, Wang Y (2017) Mesoporous silica as micro/nano-carrier: from passive to active cargo delivery, a mini review. J Mater Sci Technol 3310:1067–1074

    Google Scholar 

  • Madeira C, Loura LM, Aires-Barros MR, Prieto M (2011) Fluorescence methods for lipoplex characterization. Biochim Biophys Acta 1808(11):2694–2705

    CAS  Google Scholar 

  • Maglinao M, Eriksson M, Schlegel MK, Zimmermann S, Johannssen T, Gotze S et al (2014) A platform to screen for C-type lectin receptor-binding carbohydrates and their potential for cell-specific targeting and immune modulation. J Control Release 175:36–42

    CAS  Google Scholar 

  • Maghsoudnia N, Eftekhari RB, Sohi AN, Norouzi P, Hamid Akbari 1, Mohammad Hossein Ghahremani 3, Masoud Soleimani 4, Mohsen Amini 5, Hamed Samadi 6, Farid Abedin Dorkoosh (2020) Mitochondrial delivery of microRNA mimic let-7b to NSCLC cells by PAMAM-based nanoparticles. J Drug Target

  • Mahale NB, Thakkar PD, Mali RG, Walunj DR, Chaudhari SR (2012) Niosomes: novel sustained release nonionic stable vesicular systems--an overview. Adv Colloid Interf Sci 183–184:46–54

    Google Scholar 

  • Mannaris C, Efthymiou E, Meyre ME, Averkiou MA (2013) In vitro localized release of thermosensitive liposomes with ultrasound-induced hyperthermia. Ultrasound Med Biol 39(11):2011–2020

    Google Scholar 

  • Marianecci C, Di Marzio L, Rinaldi F, Celia C, Paolino D, Alhaique F et al (2014) Niosomes from 80s to present: the state of the art. Adv Colloid Interf Sci 205:187–206

    CAS  Google Scholar 

  • Mendez N, Liberman A, Corbeil J, Barback C, Viveros R, Wang J et al (2017) Assessment of in vivo systemic toxicity and biodistribution of iron-doped silica nanoshells. Nanomedicine. 13(3):933–942

    CAS  Google Scholar 

  • Menjoge AR, Kannan RM, Tomalia DA (2010) Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discov Today 15(5–6):171–185

    CAS  Google Scholar 

  • Miao A-J, Schwehr KA, Xu C, Zhang S-J, Luo Z, Quigg A et al (2009) The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances. Environ Pollut 157(11):3034–3041

    CAS  Google Scholar 

  • Moghassemi S, Hadjizadeh A (2014) Nano-niosomes as nanoscale drug delivery systems: an illustrated review. J Control Release 185:22–36

    CAS  Google Scholar 

  • Moles E, Moll K, Ch'ng JH, Parini P, Wahlgren M, Fernandez-Busquets X (2016) Development of drug-loaded immunoliposomes for the selective targeting and elimination of rosetting Plasmodium falciparum-infected red blood cells. J Control Release 241:57–67

    CAS  Google Scholar 

  • Monterrubio C, Paco S, Olaciregui NG, Pascual-Pasto G, Vila-Ubach M, Cuadrado-Vilanova M et al (2017) Targeted drug distribution in tumor extracellular fluid of GD2-expressing neuroblastoma patient-derived xenografts using SN-38-loaded nanoparticles conjugated to the monoclonal antibody 3F8. J Control Release 255:108–119

    CAS  Google Scholar 

  • Movahedi F, Hu RG, Becker DL, Xu C (2015) Stimuli-responsive liposomes for the delivery of nucleic acid therapeutics. Nanomedicine. 11(6):1575–1584

    CAS  Google Scholar 

  • Mustapić M, Al Hossain MS, Horvat J, Wagner P, Mitchell DRG, Kim JH et al (2016) Controlled delivery of drugs adsorbed onto porous Fe 3 O 4 structures by application of AC/DC magnetic fields. Microporous Mesoporous Mater 226:243–250

    Google Scholar 

  • Nag O, Awasthi V (2013) Surface engineering of liposomes for stealth behavior. Pharmaceutics. 5(4):542–569

    CAS  Google Scholar 

  • Najlah M, Freeman S, Attwood D, D'Emanuele A (2007) In vitro evaluation of dendrimer prodrugs for oral drug delivery. Int J Pharm 336:183–190

    CAS  Google Scholar 

  • Nanjwade BK, Bechra HM, Derkar GK, Manvi FV, Nanjwade VK (2009) Dendrimers: emerging polymers for drug-delivery systems. Eur J Pharm Sci 38(3):185–196

    CAS  Google Scholar 

  • Nguyen HT, Tran TH, Thapa RK, Phung CD, Shin BS, Jeong JH et al (2017) Targeted co-delivery of polypyrrole and rapamycin by trastuzumab-conjugated liposomes for combined chemo-photothermal therapy. Int J Pharm 527(1–2):61–71

    CAS  Google Scholar 

  • Noriega-Luna B, Godínez LA, Rodríguez FJ, Rodríguez A, Zaldívar-Lelo de Larrea G, Sosa-Ferreyra CF et al (2014) Applications of dendrimers in drug delivery agents, diagnosis, therapy, and detection. J Nanomater 2014:1–19

    Google Scholar 

  • Nosova A, Koloskova O, Nikonova A, Simonova V, Smirnov V, Kudlay D et al (2019) Diversity of PEGylation methods of liposomes and their influence on RNA delivery. MedChemComm. 10(3):369–377

    CAS  Google Scholar 

  • Olga Aronov ATH, Gabizon A, Fuertes MA, Perez JM, Gibson D (2004) Nuclear localization signal-targeted poly(ethylene glycol) conjugates as potential carriers and nuclear localizing agents for carboplatin analogues. Bioconjug Chem 15:814–823

    Google Scholar 

  • Palamoor M, Jablonski MM (2013) Poly(ortho ester) nanoparticle-based targeted intraocular therapy for controlled release of hydrophilic molecules. Mol Pharm 10(2):701–708

    CAS  Google Scholar 

  • Pan L, He Q, Liu J, Chen Y, Ma M, Zhang L et al (2012) Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. J Am Chem Soc 134(13):5722–5725

    CAS  Google Scholar 

  • Pandey AP, Sawant KK (2016) Polyethylenimine: a versatile, multifunctional non-viral vector for nucleic acid delivery. Mater Sci Eng C Mater Biol Appl 68:904–918

    CAS  Google Scholar 

  • Papasani MR, Wang G, Hill RA (2012) Gold nanoparticles: the importance of physiological principles to devise strategies for targeted drug delivery. Nanomedicine. 8(6):804–814

    CAS  Google Scholar 

  • Park KH, Chhowalla M, Iqbal Z, Sesti F (2003) Single-walled carbon nanotubes are a new class of ion channel blockers. J Biol Chem 278(50):50212–50216

    CAS  Google Scholar 

  • Patil YP, Jadhav S (2014) Novel methods for liposome preparation. Chem Phys Lipids 177:8–18

    CAS  Google Scholar 

  • Patil ML, Zhang M, Betigeri S, Taratula O, He H, Minko T (2008) Surface-modified and internally cationic polyamidoamine dendrimers for efficient siRNA delivery. Bioconjug Chem 19(7):1396–1403

    CAS  Google Scholar 

  • Patil ML, Zhang M, Minko T (2011) Multifunctional triblock nanocarrier (PAMAM-PEG-PLL) for the efficient intracellular siRNA delivery and gene silencing. ACS Nano 5(3):1877–1887

    CAS  Google Scholar 

  • Patra JK, Das G, Fraceto LF, Campos EVR, del Pilar Rodriguez-Torres M, Acosta-Torres LS et al (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 16(1):71

    Google Scholar 

  • Perezjuste J, Pastorizasantos I, Lizmarzan L, Mulvaney P (2005) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249(17–18):1870–1901

    CAS  Google Scholar 

  • Pham J, Brownlow B, Elbayoumi T (2013) Mitochondria-specific pro-apoptotic activity of genistein lipidic nanocarriers. Mol Pharm 10(10):3789–3800

    CAS  Google Scholar 

  • Pillai G. (2019) Nanotechnology toward treating cancer: a comprehensive review. Applications of Targeted Nano Drugs and Delivery Systems: Elsevier. p. 221–56

  • Pradhan P, Giri J, Banerjee R, Bellare J, Bahadur D (2007) Preparation and characterization of manganese ferrite-based magnetic liposomes for hyperthermia treatment of cancer. J Magn Magn Mater 311(1):208–215

    CAS  Google Scholar 

  • Qiu LY, Bae YH (2007) Self-assembled polyethylenimine-graft-poly(epsilon-caprolactone) micelles as potential dual carriers of genes and anticancer drugs. Biomaterials. 28(28):4132–4142

    CAS  Google Scholar 

  • Qiu L, Zhao Y, Cao N, Cao L, Sun L, Zou X (2016) Silver nanoparticle-gated fluorescence porous silica nanospheres for glutathione-responsive drug delivery. Sensors Actuators B Chem 234:21–26

    CAS  Google Scholar 

  • Qiu L, Zhao Y, Li B, Wang Z, Cao L, Sun L (2017) Triple-stimuli (protease/redox/pH) sensitive porous silica nanocarriers for drug delivery. Sensors Actuators B Chem 240:1066–1074

    CAS  Google Scholar 

  • Quiñones JP, Brüggemann O, Covas CP, Ossipov DA (2017) Self-assembled hyaluronic acid nanoparticles for controlled release of agrochemicals and diosgenin. Carbohydr Polym 173:157–169

    Google Scholar 

  • Rabenhold M, Steiniger F, Fahr A, Kontermann RE, Ruger R (2015) Bispecific single-chain diabody-immunoliposomes targeting endoglin (CD105) and fibroblast activation protein (FAP) simultaneously. J Control Release 201:56–67

    CAS  Google Scholar 

  • Radziun E, Wilczyńska JD, Książek I, Nowak K, Anuszewska E, Kunicki A et al (2011) Assessment of the cytotoxicity of aluminium oxide nanoparticles on selected mammalian cells. Toxicol in Vitro 25(8):1694–1700

    CAS  Google Scholar 

  • Ragelle H, Colombo S, Pourcelle V, Vanvarenberg K, Vandermeulen G, Bouzin C et al (2015) Intracellular siRNA delivery dynamics of integrin-targeted, PEGylated chitosan-poly(ethylene imine) hybrid nanoparticles: a mechanistic insight. J Control Release 211:1–9

    CAS  Google Scholar 

  • Ravar F, Saadat E, Gholami M, Dehghankelishadi P, Mahdavi M, Azami S et al (2016) Hyaluronic acid-coated liposomes for targeted delivery of paclitaxel, in-vitro characterization and in-vivo evaluation. J Control Release 229:10–22

    CAS  Google Scholar 

  • Rin Jean S, Tulumello DV, Wisnovsky SP, Lei EK, Pereira MP, Kelley SO (2014) Molecular vehicles for mitochondrial chemical biology and drug delivery. ACS Chem Biol 9(2):323–333

    CAS  Google Scholar 

  • Romberg B, Flesch FM, Hennink WE, Storm G (2008) Enzyme-induced shedding of a poly (amino acid)-coating triggers contents release from dioleoyl phosphatidylethanolamine liposomes. Int J Pharm 355(1–2):108–113

    CAS  Google Scholar 

  • Rose PA, Praseetha PK, Bhagat M, Alexander P, Abdeen S, Chavali M (2013) Drug embedded PVP coated magnetic nanoparticles for targeted killing of breast cancer cells. Technol Cancer Res Treat 12(5):463–472

    CAS  Google Scholar 

  • Sadekar S, Ghandehari H (2012) Transepithelial transport and toxicity of PAMAM dendrimers: implications for oral drug delivery. Adv Drug Deliv Rev 64(6):571–588

    CAS  Google Scholar 

  • Sahiner N, Sagbas S, Sahiner M, Ayyala RS (2017) Polyethyleneimine modified poly(hyaluronic acid) particles with controllable antimicrobial and anticancer effects. Carbohydr Polym 159:29–38

    CAS  Google Scholar 

  • Sajid MI, Jamshaid U, Jamshaid T, Zafar N, Fessi H, Elaissari A (2016) Carbon nanotubes from synthesis to in vivo biomedical applications. Int J Pharm 501(1–2):278–299

    CAS  Google Scholar 

  • Samimi S, Maghsoudnia N, Eftekhari RB, Dorkoosh F. (2019) Lipid-based nanoparticles for drug delivery systems. Characterization and biology of nanomaterials for drug delivery: Elsevier. p. 47–76

  • Saqafi B, Rahbarizadeh F (2019) Polyethyleneimine-polyethylene glycol copolymer targeted by anti-HER2 nanobody for specific delivery of transcriptionally targeted tBid containing construct. Artif Cells Nanomed Biotechnol 47(1):501–511

    CAS  Google Scholar 

  • Scheinberg DA, McDevitt MR, Dao T, Mulvey JJ, Feinberg E, Alidori S (2013) Carbon nanotubes as vaccine scaffolds. Adv Drug Deliv Rev 65(15):2016–2022

    CAS  Google Scholar 

  • Schroeder A, Kost J, Barenholz Y (2009) Ultrasound, liposomes, and drug delivery: principles for using ultrasound to control the release of drugs from liposomes. Chem Phys Lipids 162(1–2):1–16

    CAS  Google Scholar 

  • Sekhon BS, Kamboj SR (2010) Inorganic nanomedicine--part 1. Nanomedicine. 6(4):516–522

    CAS  Google Scholar 

  • Shah SA, Aslam Khan MU, Arshad M, Awan SU, Hashmi MU, Ahmad N (2016) Doxorubicin-loaded photosensitive magnetic liposomes for multi-modal cancer therapy. Colloids Surf B: Biointerfaces 148:157–164

    CAS  Google Scholar 

  • Shi J, Zhang H, Wang L, Li L, Wang H, Wang Z et al (2013) PEI-derivatized fullerene drug delivery using folate as a homing device targeting to tumor. Biomaterials. 34(1):251–261

    CAS  Google Scholar 

  • Shi J, Wang L, Zhang J, Ma R, Gao J, Liu Y et al (2014) A tumor-targeting near-infrared laser-triggered drug delivery system based on GO@Ag nanoparticles for chemo-photothermal therapy and X-ray imaging. Biomaterials. 35(22):5847–5861

    CAS  Google Scholar 

  • Shim G, Kim M-G, Park JY, Oh Y-K (2013) Application of cationic liposomes for delivery of nucleic acids. Asian J Pharm Sci 8(2):72–80

    CAS  Google Scholar 

  • Silva AS, Sousa AM, Cabral RP, Silva MC, Costa C, Miguel SP et al (2017) Aerosolizable gold nano-in-micro dry powder formulations for theragnosis and lung delivery. Int J Pharm 519(1–2):240–249

    CAS  Google Scholar 

  • Soenen SJ, Rivera-Gil P, Montenegro J-M, Parak WJ, De Smedt SC, Braeckmans K (2011) Cellular toxicity of inorganic nanoparticles: common aspects and guidelines for improved nanotoxicity evaluation. Nano Today 6(5):446–465

    CAS  Google Scholar 

  • Sonali SRP, Sharma G, Kumari L, Koch B, Singh S et al (2016) RGD-TPGS decorated theranostic liposomes for brain targeted delivery. Colloids Surf B: Biointerfaces 147:129–141

    CAS  Google Scholar 

  • Song L, Liang X, Yang S, Wang N, He T, Wang Y et al (2018) Novel polyethyleneimine-R8-heparin nanogel for high-efficiency gene delivery in vitro and in vivo. Drug Delivery 25(1):122–131

    CAS  Google Scholar 

  • Sui M, Liu W, Shen Y (2011) Nuclear drug delivery for cancer chemotherapy. J Control Release 155(2):227–236

    CAS  Google Scholar 

  • Suleiman MSHA, Griffiths EJ (2001) Mitochondria: a target for myocardial protection. Pharmacol Ther 89:29–46

    CAS  Google Scholar 

  • Sun Y-X, Xiao W, Cheng S-X, Zhang X-Z, Zhuo R-X (2008) Synthesis of (Dex-HMDI)-g-PEIs as effective and low cytotoxic nonviral gene vectors. J Control Release 128(2):171–178

    CAS  Google Scholar 

  • Suzuki R, Takizawa T, Kuwata Y, Mutoh M, Ishiguro N, Utoguchi N et al (2008) Effective anti-tumor activity of oxaliplatin encapsulated in transferrin-PEG-liposome. Int J Pharm 346(1–2):143–150

    CAS  Google Scholar 

  • Svenson S (2009) Dendrimers as versatile platform in drug delivery applications. Eur J Pharm Biopharm 71(3):445–462

    CAS  Google Scholar 

  • Svenson S, Tomalia DA (2012) Dendrimers in biomedical applications—reflections on the field. Adv Drug Deliv Rev 64:102–115

    Google Scholar 

  • Tai LA, Wang YC, Yang CS (2010) Heat-activated sustaining nitric oxide release from zwitterionic diazeniumdiolate loaded in thermo-sensitive liposomes. Nitric Oxide 23(1):60–64

    CAS  Google Scholar 

  • Tang J, Xiong L, Wang S, Wang J, Liu L, Li J et al (2009) Distribution, translocation and accumulation of silver nanoparticles in rats. J Nanosci Nanotechnol 9(8):4924–4932

    CAS  Google Scholar 

  • Tezgel O, Szarpak-Jankowska A, Arnould A, Auzely-Velty R, Texier I (2018) Chitosan-lipid nanoparticles (CS-LNPs): application to siRNA delivery. J Colloid Interface Sci 510:45–56

    CAS  Google Scholar 

  • Thakur S, Tekade RK, Kesharwani P, Jain NK (2013) The effect of polyethylene glycol spacer chain length on the tumor-targeting potential of folate-modified PPI dendrimers. J Nanopart Res 15(5):1625

    Google Scholar 

  • Tomalia DA (1990) Starburst dendrimers: molecular level control of size, shape, surface chemistry, topology and flexibility from atoms to macroscopic matter. Angew Chem Int Ed Eng 29:138–175

    Google Scholar 

  • Tomalia DA, Baker H, Dewald J et al (1984) A new class of polymers: starburst-dendritic macromolecules. Polym J 17:117–132

    Google Scholar 

  • Tong RYL, Fan TM, Cheng J (2010) The formulation of aptamercoated paclitaxel-polylactide nanoconjugates and their targeting to cancer cells. Biomaterials 31(11):3043–3053

    CAS  Google Scholar 

  • Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4(2):145–160

    CAS  Google Scholar 

  • Tsutsumi T, Arima H, Hirayama F, Uekama K (2006) Potential use of dendrimer/cyclodextrin conjugate as a novel carrier for small interfering RNA. J Inclusion Phenomena Macrocyclic Chem 56(1–2):81–84

    CAS  Google Scholar 

  • Uda RM, Kato Y, Takei M (2016) Photo-triggered release from liposomes without membrane solubilization, based on binding to poly(vinyl alcohol) carrying a malachite green moiety. Colloids Surf B: Biointerfaces 146:716–721

    CAS  Google Scholar 

  • Van Woensel M, Wauthoz N, Rosiere R, Mathieu V, Kiss R, Lefranc F et al (2016) Development of siRNA-loaded chitosan nanoparticles targeting Galectin-1 for the treatment of glioblastoma multiforme via intranasal administration. J Control Release 227:71–81

    Google Scholar 

  • Vinogradov SV, Zeman AD, Batrakova EV, Kabanov AV (2005) Polyplex Nanogel formulations for drug delivery of cytotoxic nucleoside analogs. J Control Release 107(1):143–157

    CAS  Google Scholar 

  • Vives E, Schmidt J, Pelegrin A (2008) Cell-penetrating and cell-targeting peptides in drug delivery. Biochim Biophys Acta 1786(2):126–138

    CAS  Google Scholar 

  • Vivès E, Schmidt J, Pèlegrin A (2008) Cell-penetrating and cell-targeting peptides in drug delivery. Biochimica et Biophysica Acta (BBA)-Reviews on. Cancer. 1786(2):126–138

    Google Scholar 

  • Wang X, Uto T, Akagi T, Akashi M, Baba M (2008) Poly(gamma-glutamic acid) nanoparticles as an efficient antigen delivery and adjuvant system: potential for an AIDS vaccine. J Med Virol 80(1):11–19

    CAS  Google Scholar 

  • Wang J, Dou B, Bao Y (2014a) Efficient targeted pDNA/siRNA delivery with folate–low-molecular-weight polyethyleneimine–modified pullulan as non-viral carrier. Mater Sci Eng C 34:98–109

    Google Scholar 

  • Wang L, Geng D, Su H (2014b) Safe and efficient pH sensitive tumor targeting modified liposomes with minimal cytotoxicity. Colloids Surf B: Biointerfaces 123:395–402

    CAS  Google Scholar 

  • Wang Q, Jiang J, Chen W, Jiang H, Zhang Z, Sun X (2016a) Targeted delivery of low-dose dexamethasone using PCL-PEG micelles for effective treatment of rheumatoid arthritis. J Control Release 230:64–72

    CAS  Google Scholar 

  • Wang D, Zhou J, Chen R, Shi R, Xia G, Zhou S et al (2016c) Magnetically guided delivery of DHA and Fe ions for enhanced cancer therapy based on pH-responsive degradation of DHA-loaded Fe3O4@C@MIL-100(Fe) nanoparticles. Biomaterials. 107:88–101

    CAS  Google Scholar 

  • Wang Y, Zhang Z, Xu S, Wang F, Shen Y, Huang S et al (2017a) pH, redox and photothermal tri-responsive DNA/polyethylenimine conjugated gold nanorods as nanocarriers for specific intracellular co-release of doxorubicin and chemosensitizer pyronaridine to combat multidrug resistant cancer. Nanomedicine. 13(5):1785–1795

    CAS  Google Scholar 

  • Wang X, Li Y, Li Q, Neufeld CI, Pouli D, Sun S et al (2017b) Hyaluronic acid modification of RNase A and its intracellular delivery using lipid-like nanoparticles. J Control Release 263:39–45

    CAS  Google Scholar 

  • Wang L, Yao J, Zhang X, Zhang Y, Xu C, Lee RJ et al (2018) Delivery of paclitaxel using nanoparticles composed of poly(ethylene oxide)-b-poly(butylene oxide) (PEO-PBO). Colloids Surf B: Biointerfaces 161:464–470

    Google Scholar 

  • Watanabe K, Harada-Shiba M, Suzuki A et al (2009) In vivo siRNA delivery with dendritic poly(L-lysine) for the treatment of hypercholesterolemia. Mol BioSyst 5(11):1306–1310

    Google Scholar 

  • Ways TM, Lau W, Khutoryanskiy V (2018) Chitosan and its derivatives for application in mucoadhesive drug delivery systems. Polymers 10(3):267

    Google Scholar 

  • Wen R, Banik B, Pathak RK, Kumar A, Kolishetti N, Dhar S (2016) Nanotechnology inspired tools for mitochondrial dysfunction related diseases. Adv Drug Deliv Rev 99(Pt A):52–69

    CAS  Google Scholar 

  • Wenjin Guo RJL (2001) Efficient gene delivery via non-covalent complexes of folic acid and polyethylenimine. J Control Release 77:131–138

    Google Scholar 

  • Wisnovsky SP, Wilson JJ, Radford RJ, Pereira MP, Chan MR, Laposa RR, Lippard SJ, Kelley SO (2013) Targeting mitochondrial DNA with a platinum-based anticancer agent. Chem Biol 20:1323–1328

    CAS  Google Scholar 

  • Wong CY, Al-Salami H, Dass CR (2017) Potential of insulin nanoparticle formulations for oral delivery and diabetes treatment. J Control Release 264:247–275

    CAS  Google Scholar 

  • Wu J, Huang W, He Z (2013) Dendrimers as carriers for siRNA delivery and gene silencing: a review. SciWorldJ. 2013:630654

    Google Scholar 

  • Xiang G, Wu J, Lu Y, Liu Z, Lee RJ (2008) Synthesis and evaluation of a novel ligand for folate-mediated targeting liposomes. Int J Pharm 356(1–2):29–36

    CAS  Google Scholar 

  • Xin Y, Qi Q, Mao Z, Zhan X (2017) PLGA nanoparticles introduction into mitoxantrone-loaded ultrasound-responsive liposomes: in vitro and in vivo investigations. Int J Pharm 528(1–2):47–54

    CAS  Google Scholar 

  • Xu Z, Jin J, Siu LK, Yao H, Sze J, Sun H et al (2012) Folic acid conjugated mPEG-PEI600 as an efficient non-viral vector for targeted nucleic acid delivery. Int J Pharm 426(1–2):182–192

    CAS  Google Scholar 

  • Yadav AK, Mishra P, Agrawal GP (2008) An insight on hyaluronic acid in drug targeting and drug delivery. J Drug Target 16(2):91–107

    CAS  Google Scholar 

  • Yamada Y, Shinohara Y, Kakudo T, Chaki S, Futaki S, Kamiya H et al (2005) Mitochondrial delivery of mastoparan with transferrin liposomes equipped with a pH-sensitive fusogenic peptide for selective cancer therapy. Int J Pharm 303(1–2):1–7

    CAS  Google Scholar 

  • Yamada Y, Furukawa R, Yasuzaki Y, Harashima H (2011) Dual function MITO-Porter, a nano carrier integrating both efficient cytoplasmic delivery and mitochondrial macromolecule delivery. Mol Ther 19(8):1449–1456

    CAS  Google Scholar 

  • Yamada Y, Furukawa R, Harashima H (2016) A Dual-ligand liposomal system composed of a cell-penetrating peptide and a mitochondrial RNA aptamer synergistically facilitates cellular uptake and mitochondrial targeting. J Pharm Sci 105(5):1705–1713

    CAS  Google Scholar 

  • Yang K, Feng L, Liu Z (2016) Stimuli responsive drug delivery systems based on nano-graphene for cancer therapy. Adv Drug Deliv Rev 105(Pt B):228–241

    CAS  Google Scholar 

  • Yavuz B, Bozdag Pehlivan S, Sumer Bolu B, Nomak Sanyal R, Vural I, Unlu N (2016) Dexamethasone - PAMAM dendrimer conjugates for retinal delivery: preparation, characterization and in vivo evaluation. J Pharm Pharmacol 68(8):1010–1020

    CAS  Google Scholar 

  • Yoo HS, Jeong SY (2007) Nuclear targeting of non-viral gene carriers using psoralen-nuclear localization signal (NLS) conjugates. Eur J Pharm Biopharm 66(1):28–33

    CAS  Google Scholar 

  • Yu GS, Han J, Ko KS, Choi JS (2013) Cationic oligopeptide-conjugated mitochondria targeting sequence as a novel carrier system for mitochondria. Macromol Res 22(1):42–46

    Google Scholar 

  • Zhang B, Sun X, Mei H, Wang Y, Liao Z, Chen J et al (2013) LDLR-mediated peptide-22-conjugated nanoparticles for dual-targeting therapy of brain glioma. Biomaterials. 34(36):9171–9182

    CAS  Google Scholar 

  • Zhang S, Gao H, Bao G (2015) Physical principles of nanoparticle cellular endocytosis. ACS Nano 9(9):8655–8671

    CAS  Google Scholar 

  • Zhang J, Song J, Liang X, Yin Y, Zuo T, Chen D et al (2019) Hyaluronic acid-modified cationic nanoparticles overcome enzyme CYP1B1-mediated breast cancer multidrug resistance. Nanomedicine. 14(4):447–464

    CAS  Google Scholar 

  • Zhao J, Lu C, He X, Zhang X, Zhang W, Zhang X (2015) Polyethylenimine-grafted cellulose nanofibril aerogels as versatile vehicles for drug delivery. ACS Appl Mater Interfaces 7(4):2607–2615

    CAS  Google Scholar 

  • Zhao C, Liu X, Zhang X, Yan H, Qian Z, Li X et al (2017) A facile one-step method for preparation of Fe3O4/CS/INH nanoparticles as a targeted drug delivery for tuberculosis. Mater Sci Eng C Mater Biol Appl 77:1182–1188

    CAS  Google Scholar 

  • Zhong Y, Zhang J, Cheng R, Deng C, Meng F, Xie F et al (2015) Reversibly crosslinked hyaluronic acid nanoparticles for active targeting and intelligent delivery of doxorubicin to drug resistant CD44+ human breast tumor xenografts. J Control Release 205:144–154

    CAS  Google Scholar 

  • Zhong Q, Bielski ER, Rodrigues LS, Brown MR, Reineke JJ, da Rocha SR (2016) Conjugation to poly(amidoamine) dendrimers and pulmonary delivery reduce cardiac accumulation and enhance antitumor activity of doxorubicin in lung metastasis. Mol Pharm 13(7):2363–2375

    CAS  Google Scholar 

  • Zhou JRJ (2010) Aptamer-targeted cell-specific RNA interference. Silence 1(1):4

    Google Scholar 

  • Zhou JLH, Li S, Zaia J, Rossi JJ (2008) Novel dual inhibitory function aptamer-siRNA delivery system for HIV-1 therapy. Mol Ther 16(8):1481–1489

    CAS  Google Scholar 

  • Zhou Z, Shen Y, Tang J, Fan M, Van Kirk EA, Murdoch WJ et al (2009) Charge-reversal drug conjugate for targeted cancer cell nuclear drug delivery. Adv Funct Mater 19(22):3580–3589

    CAS  Google Scholar 

Download references

Acknowledgments

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farid Abedin Dorkoosh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maghsoudnia, N., Eftekhari, R.B., Sohi, A.N. et al. Application of nano-based systems for drug delivery and targeting: a review. J Nanopart Res 22, 245 (2020). https://doi.org/10.1007/s11051-020-04959-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-020-04959-8

Keywords

Navigation