Skip to main content
Log in

Electronic and transport properties of graphene nanoflakes with the protrusion of different widths

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Theoretical investigation on the transport properties of graphene nanoflakes (GNFs) with protrusions has been performed with density-functional calculations by considering the influence of the structural symmetry. It is found that GNFs with different widths of protrusions exhibit distinctly different transport properties, depending on whether they are mirror symmetric with respect to the midplane (σ) between the two edges. For the symmetric models, electrons primarily pass through the edges of the GNFs with a small transmission probability. On the contrary, the electrons prefer to transit along one side of the GNFs with a high probability in the asymmetric models. Therefore, the conductivity of asymmetric models is greater than that of symmetric models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dong X, Wang X, Jia C, Lee T, Guo X (2016). Chem Rev 116:4318–4440

    Google Scholar 

  2. Metzger RM (2015). J Mater Chem 115:5056–5115

    CAS  Google Scholar 

  3. Sun L, Diazfernandez YA, Gschneidtner TA, Westerlund F, Laraavila S, Mothpoulsen K (2014). Chem Soc Rev 43:7378–7411

    PubMed  CAS  Google Scholar 

  4. Dou KP, Fu XX, De Sarkar A, Zhang RQ (2015). Nanoscale 7:20003–20008

    PubMed  CAS  Google Scholar 

  5. Dou KP, Kaun CC, Zhang RQ (2018). Nanoscale 10:4861–4864

    PubMed  CAS  Google Scholar 

  6. Schedin F, Geim AK, Morozov SV et al (2007). Nat Mater 6:652–655

    PubMed  CAS  Google Scholar 

  7. Dan Y, Lu Y, Kybert NJ et al (2009). Nano Lett 9:1472–1475

    PubMed  CAS  Google Scholar 

  8. Merchant CA, Healy K, Wanunu M et al (2010). Nano Lett 10:3163–3167

    Google Scholar 

  9. Garaj S, Hubbard W, Reina A et al (2010). Nature 467:190–193

    PubMed  PubMed Central  CAS  Google Scholar 

  10. Wang Y, Yang R, Shi ZW et al (2011). ACS Nano 5:3645–3350

    PubMed  CAS  Google Scholar 

  11. Polat EO, Kocabas C (2013). Nano Lett 13:5851–5857

    PubMed  CAS  Google Scholar 

  12. Miler JR, Outlaw RA, Holloway BC et al (2010). Science 329:1637–1639

    Google Scholar 

  13. Bai JW, Zhong X, Jiang S et al (2010). Nat Nanotechnol 5:190–194

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Shen FP, Wang D, Liu R et al (2013). Nanoscale 5:537–540

    PubMed  CAS  Google Scholar 

  15. Li X, Wang X, Zhang L, Lee S, Dai H (2008). Science 319:1229–1232

    PubMed  CAS  Google Scholar 

  16. Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM (2009). Nature 458:872–876

    PubMed  CAS  Google Scholar 

  17. Xiao Z, She J, Deng S (2010). ACS Nano 4:6332–6336

    PubMed  CAS  Google Scholar 

  18. Datta SS, Strachan DR, Khamis SM, Johnson ATC (2008). Nano Lett 8:1912–1915

    PubMed  CAS  Google Scholar 

  19. Ren H, Li QX, Luo Y, Yang J (2009). Appl Phys Lett 94:173110

    Google Scholar 

  20. Li Z, Qian H, Wu J, Gu B, Duan W (2008). Phys Rev Lett 100:206802

    PubMed  Google Scholar 

  21. Zhang L, Zhao J, Cheng N, Chen Z (2020). Phys Chem Chem Phys 22:3584–3591

    PubMed  CAS  Google Scholar 

  22. Kvashnin DG, Chernozatonskii LA (2014). Appl Phys Lett 105:083115

    Google Scholar 

  23. Kvashnin AG, Kvashnin DG, Kvashnina OP, Chernozatonskii LA (2015). Nanotechnology 26:385705

    PubMed  CAS  Google Scholar 

  24. Wang ZF, Li QX, Zheng HX, Ren H, Su HB, Shi QW, Chen J (2007). Phys Rev B 75:113406

    Google Scholar 

  25. Lee G, Cho K (2009). Phys Rev B 79:165440

    Google Scholar 

  26. Zeng J, Chen KQ, He J, Zhang XJ, Sun CQ, Phys J (2011). Chem C 115:25072–25076

    CAS  Google Scholar 

  27. Marconcini P, Cresti A, Triozon F, Fiori G, Biel B, Niquet YM, Macucci M, Roche S (2012). ACS Nano 6(9):7942–7947

    PubMed  CAS  Google Scholar 

  28. Biel B, Triozon F, Blase X, Roche S (2009). Nano Lett 9(7):2725–2729

    PubMed  CAS  Google Scholar 

  29. Saloriutta K, Hancock Y, Kärkkäinen A, Kärkkäinen L, Puska MJ, Jauho AP (2011). Phys Rev B 83:205125

    Google Scholar 

  30. Dubois SMM, Lopez-Bezanilla A, Cresti A, Triozon F, Biel B, Charlier JC, Roche S (2010). ACS Nano 4:1971–1976

    PubMed  CAS  Google Scholar 

  31. An YP, Ji W, Yang ZQ, Phys J (2012). Chem C 116:5915–5919

    CAS  Google Scholar 

  32. Dou KP, Fu XX, De Sarkar A, Zhang RQ (2015). Nanoscale 7:20003–20008

    PubMed  CAS  Google Scholar 

  33. Atomistix ToolKit; QuantumWise A/S, http://www.quantumwise.com

  34. Perdew JP, Zunger A (1981). Phys Rev B 23:5048–5079

    CAS  Google Scholar 

  35. Chowdhury R, Scarpa F, Adhikari S (2012). J Appl Phys 112:014905

    Google Scholar 

  36. Yamacli S (2014). J Nanopart Res 16:2576

    Google Scholar 

  37. Zhang YH, Chen YB, Zhou KG, Liu CH, Zeng J, Zhang HL, Peng Y (2009). Nanotechnology 20:185504

    PubMed  Google Scholar 

  38. Zha D, Chen C, Wu J (2015). Solid State Commun 219:21

    CAS  Google Scholar 

  39. Zhao P, Wang PJ, Zhang Z, Liiu DS (2010). Chin Sci Bull 55:964–966

    Google Scholar 

  40. Liu H, Zhao J, Boey F, Zhang H (2009). Phys Chem Phys Chem 11:10323–10330

    CAS  Google Scholar 

  41. Liu H, Li P, Zhao J, Yin X, Zhang H (2008). J Chem Phys:129,224704

  42. Zhao J, Yu C, Liu H, Phys J (2010). Chem C 114:4135–4141

    CAS  Google Scholar 

  43. Seminario JM, Zacarias AG, Derosa PA, Phys J (2001). Chem A 105:791–795

    CAS  Google Scholar 

  44. Cheng N, Chen F, Durkan C, Wang N, He Y, Zhao J (2018). Phys Chem Chem Phys 20:28860–28870

    PubMed  CAS  Google Scholar 

  45. Liu H, Wang N, Li P, Yin X, Yu C, Gao N, Zhao J (2011). Phys Chem Chem Phys 13:1301–1306

    PubMed  CAS  Google Scholar 

  46. Zhang L, Chen Z, He Y, Durkan C, Wang N, Zhao J, Cheng N (2019). Comput Mater Sci 162:124–132

    CAS  Google Scholar 

  47. Datta S (1996). Phys Today 49:70

    Google Scholar 

  48. Meir Y, Wingreen NS (1992). Phys Rev Lett 68:2512–2515

    PubMed  CAS  Google Scholar 

Download references

Funding

This research was supported by Zhejiang Provincial Natural Science Foundation of China under Grant (LQ20B030012, LY19B030006), National Natural Science Foundation of China (51861145202, 5182121), and Key Laboratory of Yarn Materials Forming and Composite Processing Technology, Zhejiang Province (MTC-2020-07).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianwei Zhao or Yuanyuan He.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 761 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, N., Zhang, L., Zhao, J. et al. Electronic and transport properties of graphene nanoflakes with the protrusion of different widths. J Mol Model 26, 229 (2020). https://doi.org/10.1007/s00894-020-04496-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04496-0

Keywords

Navigation