Skip to main content
Log in

Morphophysiological responses of forest seedling species subjected to different water regimes

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Water availability is a limiting factor for the establishment and development of forest species. To understand the appropriate conditions for the initial post-transplanting phase, it is necessary to understand the specific morphophysiological characteristics of the species, such as the leaf water potential and the efficiency of photosystem II. We aimed to identify the influence of different water regimes on the morphophysiological aspects of young plants of two forest species (Cedrela fissilis Vellozo and Eucalyptus saligna Sm.). Two greenhouse experiments were conducted for 28 days; one for each species. The design was completely randomized, and the treatments consisted of six different water regimes. Leaf water potential (Ψw) and chlorophyll a fluorescence were evaluated every 7 days. At the end of the experiment, morphological attributes (height, collection diameter, root volume, and dry matter) were measured and histological blades were made. The water demand of E. saligna was higher than that of C. fissilis and required greater replacement within a shorter period. The rehydration from Ψw = − 2 Mpa allowed for a fast recovery of the young C. fissilis plants (Ψw = − 1.5, Fv/Fm = 0.796), which indicated good physiological plasticity of this species when submitted to water stress at a level that is not severe. The total dry matter allocation was different among species. Seedlings of E. saligna presented the best responses when submitted to a continuous water supply regime, while C. fissilis seedlings presented the best response under intermittent irrigation conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alvares CA, Stape JL, Sentelhas PC, de Moraes JLG, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22(6):711–728

    Article  Google Scholar 

  • Araújo SAC, Deminicis BB (2009) Fotoinibição da fotossíntese. Rev Bras Biociênc 7(4):464–472

    Google Scholar 

  • Araujo MM, Navroski MC, Schorn LA, Tabaldi LA, Rorato DG, Turchetto F, Zavistanovicz TC, Berghetti ÁLP, Aimi SC, da Tonetto TS, Gasparin E, Kelling MB, Ávila AL, Dutra AF, Mezzomo JC, Gomes, Griebeler AM, da Silva MR, Barbosa FM, de Lima MS (2018) Caracterização e análise de atributos morfológicos e fisiológicos indicadores da qualidade de mudas em viveiro florestal. In: Araujo MM, Navroski MC, Schorn LA (eds) Produção de sementes e mudas um enfoque à silvicultura, 1st edn. editoraufsm, Santa Maria, pp 345–365

    Chapter  Google Scholar 

  • Baker NR (1991) A possible role for photosystem II in environmental perturbations of photosynthesis. Physiol Plant 81(4):563–570

    Article  CAS  Google Scholar 

  • Benincasa MMP (1998) Análise de crescimento de plantas (noções básicas). Jaboticabal, FUNEP, p 41

    Google Scholar 

  • Berghetti ÁLP, Araujo MM, Tabaldi LA, Rorato DG, Aimi SC, de Fárias JG (2019) Growth and physiological attributes of cordia trichotoma seedlings in response to fertilization with phosphorus and potassium. Floresta 49(1):133–142

    Article  Google Scholar 

  • Burger LM, Richter HG (1991) Anatomia da Madeira. Nobel, São Paulo, p 154

    Google Scholar 

  • Chou SC, Lyra A, Mourão C, Dereczynski C, Pilotto I, Gomes J, Bustamante J, Tavares P, Silva A, Rodrigues D, Campos D, Chagas D, Sueiro G, Siqueira G, Marengo J (2014) Assessment of Climate Change over South America under RCP 4.5 and 8.5 Downscaling Scenarios. Am J Clim Chang 3(1):512–527

    Article  Google Scholar 

  • Condon AG, Richards RA, Rebetzke GJ, Farquhar GD (2002) Improving intrinsic water-use efficiency and crop yield. Crop Sci 42(1):122–131

    PubMed  Google Scholar 

  • Coradin L, Siminski A, Reis A (2011) Espécies nativas da flora brasileira de valor econômico atual ou potencial: plantas para o futuro - Região Sul. MMA, Brasília, p 936

    Google Scholar 

  • Cordeiro YEM, Pinheiro HA, dos Santos Filho BG, Corrêa SS, Silva JR, Dias-Filho MB (2009) Physiological and morphological responses of young mahogany (Swietenia macrophylla King) plants to drought. For Ecol Manag 258(7):1449–1455

    Article  Google Scholar 

  • da Silva W, Sediyama T, da Silva AA, Cardoso AA (2004) Índice de consumo e eficiência do uso da água em eucalipto, submetido a diferentes teores de água em convivência com braquiária. Floresta 34:325–335

    Google Scholar 

  • de Campelo DH, Lacerda CF, Sousa JA, Correia DB, Araújo AME, Neves JDM, Rocha AL (2015) Trocas gasosas e eficiência do fotossistema ii em plantas adultas de seis espécies florestais em função do suprimento de água no solo. Rev Árvore 39(5):973–983

    Article  Google Scholar 

  • Deeba F, Pandey AK, Ranjan S, Mishra A, Singh R, Sharma YK, Pandey V (2012) Physiological and proteomic responses of cotton (Gossypium herbaceum L.) to drought stress. Plant Physiol Biochem 53:6–18

    Article  CAS  PubMed  Google Scholar 

  • do Nascimento HHC, Nogueira RJMC, da Silva EC, da Silva MA (2011) Análise do crescimento de mudas de jatobá (Hymenaea courbaril L.) em diferentes níveis de água no solo. Rev Árvore 35:617–626

    Article  Google Scholar 

  • Embrapa EBDPA (2013) Sistema brasileiro de classificação de solos, p 363

  • Figueirôa JM, Barbosa DCA, Simabukuro EA (2004) Crescimento de plantas jovens de Myracrodruon urundeuva Allemão (Anacardiaceae) sob diferentes regimes hídricos. Acta Bot Bras 18:572–580

    Article  Google Scholar 

  • Flexas J, Medrano H (2002) Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Ann Bot 89:183–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flexas J, Bota J, Galmés J, Medrano H, Ribas-Carbó M (2006) Keeping a positive carbon balance under adverse conditions: Responses of photosynthesis and respiration to water stress. Physiol Plant 127(3):343–352

    Article  CAS  Google Scholar 

  • Gonçalves JLM, Stape JL, Laclau JP, Bouillet JP, Ranger J (2008) Assessing the effects of early silvicultural management on long-term site productivity of fast-growing eucalypt plantations: the Brazilian experience. South For J For Sci 70(2):105–118

    Article  Google Scholar 

  • Grossnickle SC (2012) Why seedlings survive: influence of plant attributes. New For 43:711–738

    Article  Google Scholar 

  • Grossnickle SC, MacDonald JE (2018) Why seedlings grow: influence of plant attributes. New For 49:1–34

    Article  Google Scholar 

  • Hatfield JL, Dold C (2019) Water-use efficiency: advances and challenges in a changing climate. Front Plant Sci 10:1–14

    Article  Google Scholar 

  • Hodecker BER, Pita-Barbosa A, de Barros NF, Merchant A (2018) Water availability preceding long-term drought defines the tolerance of Eucalyptus to water restriction. New For 49:173–195

    Article  Google Scholar 

  • IBA (2018) Árvores Plantadas. In: indústria Bras. árvores. https://www.iba.org/arvores-plantadas. Accessed 12 Nov 19

  • Jafarnia S, Akbarinia M, Hosseinpour B, Modarres Sanavi SAM, Salami SA (2018) Effect of drought stress on some growth, morphological, physiological, and biochemical parameters of two different populations of Quercus brantii. IForest 11(2):212–220

    Article  Google Scholar 

  • Kramer PJ, Boyer JS (1995) Water relations of plants and soils. Academic Press, New York

    Google Scholar 

  • Lage-Pinto F, Bernini E, de Oliveira JG, Vitória AP (2012) Photosynthetic analyses of two native Atlantic Forest species in regenerative understory of eucalyptus plantation. Braz J Plant Physiol 24:95–106

    Article  CAS  Google Scholar 

  • Leiva MJ, Pérez-Romero JA, Mateos-Naranjo E (2018) The effect of simulated damage by weevils on Quercus ilex subsp. Ballota acorns germination, seedling growth and tolerance to experimentally induced drought. For Ecol Manag 409:740–748

    Article  Google Scholar 

  • Liu Y, Bai SL, Zhu Y, Li GL, Jiang P (2012) Promoting seedling stress resistance through nursery techniques in China. New For 43(5–6):639–649

    Article  Google Scholar 

  • Longue Júnior D, Colodette JL (2013) Importância e versatilidade da madeira de eucalipto para a indústria de base florestal. Pesqui Florest Bras 33:129–438

    Google Scholar 

  • Madani N, Kimball JS, Ballantyne AP, Affleck DL, Van Bodegom PM, Reich PB, Zhao M (2018) Future global productivity will be affected by plant trait response to climate. Sci Rep 8(1):1–10

    Article  CAS  Google Scholar 

  • Mady FTM (2007) Técnicas para Microscopia da Madeira. Editora da Universidade Federal do Amazonas (EDUA), Manaus, p 80

    Google Scholar 

  • Martinelli G, Moraes M (2013) Livro vermelho da flora do Brasil, 1st edn. Rio de Janeiro, p 1100

  • Moritz C, Agudo R (2013) The future of species under climate change: resilience or decline? Science 341:504–508

    Article  CAS  PubMed  Google Scholar 

  • Muellner AN, Pennington TD, Koecke AV, Renner SS (2010) Biogeography of Cedrela (Meliaceae, Sapindales) in Central and South America. Am J Bot 97(3):511–518

    Article  PubMed  Google Scholar 

  • Noulèkoun F, Lamers JPA, Naab J, Khamzina A (2017) Shoot and root responses of woody species to silvicultural management for afforestation of degraded croplands in the Sudano-Sahelian zone of Benin. For Ecol Manag 385:254–563

    Article  Google Scholar 

  • Otto MSG, Vergani AR, Gonçalves AN, Vrechi A, Silva SR, Stape JL (2013) Fotossíntese, condutância estomática e produtividade de clones de Eucalyptus sob diferentes condições edafoclimáticas. Rev Árvore 37(3):431–439

    Article  Google Scholar 

  • Paludzyszyn Filho E, dos Santos PET (2013) Escolha de cultivares de eucaliptos em função do ambiente e do uso. Colombo, p 11

  • Pereira MRR, Klar AE, Melhorança Filho AL, Rodrigues ACP, Da Silva MR (2007) Influência de diferentes condições de solo no desenvolvimento de plantas de Eucalyptus urograndis submetidas a déficit hídrico. Irriga 12(4):519–530

    Article  Google Scholar 

  • Pimentel C (2004) A Relação da Planta com a Água. Editora Universidade Federal Rural do Rio de Janeiro, Seropédica, p 190

    Google Scholar 

  • Ponpang-Nga P, Techamahasaranont J (2016) Effects of climate and land use changes on water balance in upstream in the Chao Phraya River basin, Thailand. Agric Nat Resour 50:310–320

    Google Scholar 

  • R Core Team (2018) R: a language and environment for statistical computing. https://www.r-project.org/

  • Reitz JR (1984) Meliaceae. Itajaí: Flora Ilustrada Catarinense, p 140

  • Ritchie GA, Landis TD, Dumroese RK, Haase DL (2010) Assessing plant quality. In: Landis TD, Dumroese R, Haase D (eds) The container tree nursery manual. volume 7, seedling processing, storage, and outplanting, 7th edn. U.S. Department of Agriculture Forest Service, Washington, pp 19–81

    Google Scholar 

  • Sanches MC, Marzinek J, Bragiola NG, Nascimento ART (2017) Morpho-physiological responses in Cedrela fissilis Vell. submitted to changes in natural light conditions: implications for biomass accumulation. Trees 31(1):215–227

    Article  CAS  Google Scholar 

  • Scholander PF, Hammel HT, Bradstreet ED, Hemmingsen EA (1965) Sap pressure in vascular plants. Science 148:339–346

    Article  CAS  PubMed  Google Scholar 

  • Silva P, Campoe O, de Paula R, Lee D (2016) Seedling growth and physiological responses of sixteen eucalypt taxa under controlled water regime. Forests 7:1–13

    Google Scholar 

  • Siqueira SDF, Higuchi P, Silva ACD (2019) Contemporary and future potential geographic distribution of Cedrela fissilis Vell. under climate change scenarios. Rev Árvore 43:3

    Article  Google Scholar 

  • SOCIEDADE BRASILEIRA DE CIÊNCIA DO SOLO (2016) Manual de calagem e de adubação para os Estados do Rio Grande do Sul e de Santa Catarina/Sociedade Brasileira de Ciência do Solo. Comissão de Química e Fertilidade do Solo – RS/SC, p 376

  • Taiz L, Zeiger E, Moller IM, Murphy A (2017) Fisiologia e Desenvolvimento Vegetal, 6th edn. Artmed, Porto Alegre, p 888

    Google Scholar 

  • Tatagiba SD, Pezzopane J, Reis EF (2015) Fotossíntese em eucalyptus sob diferentes condições edafoclimáticas. Eng na Agric 23:336–345

    Google Scholar 

  • Turchetto F, Araujo MM, Tabaldi LA, Griebeler A, Rorato DG, Aimi SC, Berghetti ÁLP, Gomes DR (2016) Can transplantation of forest seedlings be a strategy to enrich seedling production in plant nurseries? For Ecol Manag 375:96–104

    Article  Google Scholar 

  • Urrutia-Jalabert R, Malhi Y, Barichivich J, Lara A, Delgado-Huertas A, Rodríguez CG, Cuq E (2015) Increased water use efficiency but contrasting tree growth patterns in Fitzroya cupressoides forests of southern Chile during recent decades. J Geophys Res Biogeosci 120(12):2505–2524

    Article  Google Scholar 

  • Whitehead D, Beadle CL (2004) Physiological regulation of productivity and water use in Eucalyptus: a review. For Ecol Manag 193:113–140

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the National Council for Scientific and Technological Development (CNPq) and Coordination for the Improvement of Higher Education Personnel (Capes) for granting scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Maria Griebeler.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project funding: This work was supported by the Council for Scientific and Technological Development (CNPq) and the Coordination for the Improvement of Education Personnel (CAPES).

The online version is available at http://www.springerlink.com.

Corresponding editor: Yu Lei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Griebeler, A.M., Araujo, M.M., Barbosa, F.M. et al. Morphophysiological responses of forest seedling species subjected to different water regimes. J. For. Res. 32, 2099–2110 (2021). https://doi.org/10.1007/s11676-020-01200-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-020-01200-z

Keywords

Navigation