Skip to main content
Log in

Semi-Quantum Proxy Signature Scheme with Quantum Walk-Based Teleportation

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum secure communication network is in the stage of rapid construction. As classical networks, we researchers also need to develop different practical quantum protocols for different application scenarios in quantum communication network. However, complex quantum operations and expensive quantum resource preparation seriously hinder the practical development of quantum communication networks. A variety of quantum signature protocols play an important role in quantum communications; however, these protocols also face the same problems described above. In this paper, we propose a semi-quantum proxy signature scheme with quantum walk-based teleportation to solve these problems. Proxy signer TP as the quantum participant and original signer Alice is the classical participant. We introduce quantum walk teleportation to generate quantum entanglement resource naturally in signature phase, which seems more in line with the reality of quantum communication networks. Security analysis show that this scheme meets all the security requirement of quantum proxy signature protocol, and the qubit efficiency analysis also proves this protocol has better practical value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. P, Townsend.: Quantum cryptography on multiuser optical fiber network. Nature, 385(6611), pp.47–49 (1997)

  2. G, Brassard., F, Bussieres., N, Godbout., et al.: Multi-user quantum key distribution using wave-length division multiplexing. Proc. of SPIE 2003, 5260(6), pp.149–153 (2003)

  3. Mehic, M., Maurhart, O., Rass, S., Voznak, M.: Implementation of quantum key distribution network simulation module in the network simulator ns-3. Quantum Inf. Process. 16(10), 253 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  4. Yuan, Z., Plews, A., Takahashi, R., Doi, K., Tam, W., Sharpe, A., Dixon, A., Lavelle, E., Dynes, J., Murakami, A., et al.: 10-mb/s quantum key distribution. J. Lightwave Technol. 36(16), 3427–3433 (2018)

    Article  ADS  Google Scholar 

  5. Li, D.F., Wang, R.J., Baagyere, E.: Quantum teleportation of an arbitrary two-qubit state by using two three-qubit GHZ states and the six-qubit entangled state. Quantum Inf. Process. 18(5), 147 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  6. Cao, Z.L., Yang, M., Guo, G.C.: The scheme for realizing probabilistic teleportation of atomic states and purifying the quantum channel on cavity QED. Phys. Lett. A. 308(5), 349–354 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  7. Bennett, C.H., Wiesner, S.J.: Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69(20), 2881–2884 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  8. Jakobi, M., Simon, C., Gisin, N., Bancal, J.D., Branciard, C., Walenta, N., Zbinden, H.: Practical private database queries based on a quantum-key-distribution protocol. Phys. Rev. A. 83, 022301 (2011)

    Article  ADS  Google Scholar 

  9. Gao, F., Liu, B., Wen, Q.Y.: Flexible quantum private queries based on quantum key distribution. Opt. Express. 20, 17411–17420 (2012)

    Article  ADS  Google Scholar 

  10. Yang, Y.-G., Sun, S.J., Xu, P., Tian, J.: Flexible protocol for quantum private query based on B92 protocol. Quantum Inf. Process. 13, 805–813 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  11. Diffie, W., Hellman: New directions in cryptography. IEEE Trans. Inf. Theory 22, 644–654 (1976)

  12. Gottesman, D., Chuang, I.: Quantum digital signatures. arXiv:0105032 (2001)

  13. Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A. 65, 042312 (2002)

    Article  ADS  Google Scholar 

  14. Feng, Y., Shi, R., et al.: Arbitrated quantum signature scheme with quantum walk-based teleportation. Quantum Inf. Process. 18(5), 254 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  15. Yan, L.L., Chang, Y., Zhang, S.B., Han, G.H., Sheng, Z.W.: A quantum multi-proxy weak blind signature scheme based on entanglement swapping. Int. J. Theor. Physics. 56, 634–642 (2017)

    Article  Google Scholar 

  16. Yang, Y.G., Liu, Z.C., Li, J., Chen, X.B., Zuo, H.J., Zhou, Y.H., Shi, W.M.: Theoretically extensible quantum digital signature with star-like cluster states. Quantum Inf. Process. 16(1), 12 (2017)

    Article  ADS  Google Scholar 

  17. Yang, Y.G., Lei, H., Liu, Z.C., Zhou, Y.H., Shi, W.M.: Arbitrated quantum signature scheme based on cluster states. Quantum Inf. Process. 15(6), 2487–2497 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  18. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical bob. Phys. Rev. Lett. 99(14), 140501 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  19. Yan, L.L., Sun, Y.H., Chang, Y., Zhang, S.B., Wan, G.G., Sheng, Z.W.: Semi-quantum protocol for deterministic secure quantum communication using Bell states. Quantum Inf. Process. 17, 315 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  20. Yu, K.F., Yang, C.W., Liao, C.H., Hwang, T.: Authenticated semi-quantum key distribution protocol using bell states. Quantum Inf. Process. 13(6), 1457–1465 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  21. Shukla, C., Thapliyal, K., Pathak, A.: Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue. Quantum Inf. Process. 16, 295 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  22. Luo, Y.P., Hwang, T.: Authenticated semi-quantum direct communication protocols using bell states. Quantum Inf. Process. 15(2), 947–958 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  23. Zhang, M.H., Li, H.F., Peng, J.Y.: Semi-quantum secure direct communication using ERP pairs. Quantum Inf. Process. 16(5), 117 (2017)

    Article  ADS  Google Scholar 

  24. Wang, Y., Shang, Y., Xue, P.: Generalized teleportation by quantum walks. Quantum Inf. Process. 16(9), 221 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  25. Shikano, Y.: From discrete time quantum walk to continuous time quantum walk in limit distribution. J. Comput. Theor. Nanosci. 10(7), 1558–1570 (2013)

    Article  Google Scholar 

  26. Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: In: Proceedings of the Thirty-third Annual ACM Symposium on Theory of Computing ACM, pp. 37–49 (2001)

  27. Su, X.L.: Applying Gaussian quantum discord to quantum key distribution. Chin. Sci. Bull. 59(11), 1083–1090 (2014)

    Article  Google Scholar 

  28. Cai, H., Long, C.M., DeRose, C.T., Boynton, N., Urayama, J., Camacho, R., Pomerene, A., Starbuck, A.L., Trotter, D.C., Davids, P.S., Lentine, A.L.: Silicon photonic transceiver circuit for high-speed polarization-based discrete variable quantum key distribution. Opt. Express. 25(11), 12282–12294 (2017)

    Article  ADS  Google Scholar 

  29. Wang, L., Zhou, Y.Y., Zhou, X.J., Chen, X., Zhang, Z.: Correction to: new scheme for measurement-device-independent quantum key distribution. Quantum Inf. Process. 18(1), 12 (2019)

    Article  ADS  Google Scholar 

  30. Yang, Y.G., et al.: Novel classical post-processing for quantum key distribution-based quantum private query. Quantum Inf. Process. 15(9), 3833–3840 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  31. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. Lett. 65(3), 032302 (2002)

    ADS  Google Scholar 

  32. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A. 68(4), 042317 (2003)

    Article  ADS  Google Scholar 

  33. Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A. 351(1–2), 23–25 (2006)

    Article  ADS  Google Scholar 

  34. Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A. 74(5), 054302 (2006)

    Article  ADS  Google Scholar 

  35. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A. 72(4), 044302 (2005)

    Article  ADS  Google Scholar 

  36. Damgard, I.B.: A design principle for hash functions. Adv. Cryptol. 89(435), 416–427 (1990)

    MathSciNet  MATH  Google Scholar 

  37. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635–5638 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Authors want to thanks anonymous reviewers who help to improve this paper. This work is supported by the National Natural Science Foundation of China (No.61572086, No.61402058), the Key Research and Development Project of Sichuan Province (No. 20ZDYF2324, No. 2019ZYD027, No. 2018TJPT0012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Bin Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, T., Chang, Y., Yan, L. et al. Semi-Quantum Proxy Signature Scheme with Quantum Walk-Based Teleportation. Int J Theor Phys 59, 3145–3155 (2020). https://doi.org/10.1007/s10773-020-04568-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04568-0

Keywords

Navigation