Skip to main content
Log in

Mechanical Stimuli for Left Ventricular Growth During Pressure Overload

  • Sp Iss: Experimental Advances in Cardiovascular Biomechanics
  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Background

The mechanical stimulus (i.e., stress or stretch) for growth occurring in the pressure-overloaded left ventricle (LV) is not exactly known.

Objective

To address this issue, we investigate the correlation between local ventricular growth (indexed by local wall thickness) and the local acute changes in mechanical stimuli after aortic banding.

Methods

LV geometric data were extracted from 3D echo measurements at baseline and 2 weeks in the aortic banding swine model (n = 4). We developed and calibrated animal-specific finite element (FE) model of LV mechanics against pressure and volume waveforms measured at baseline. After simulation of the acute effects of pressure-overload, the local changes of maximum, mean and minimum myocardial stretches and stresses in three orthogonal material directions (i.e., fiber, sheet and sheet-normal) over a cardiac cycle were quantified. Correlation between mechanical quantities and the corresponding measured local changes in wall thickness was quantified using the Pearson correlation number (PCN) and Spearman rank correlation number (SCN).

Results

At 2 weeks after banding, the average septum thickness decreased from 10.6 ± 2.92 mm to 9.49 ± 2.02 mm, whereas the LV free-wall thickness increased from 8.69 ± 1.64 mm to 9.4 ± 1.22 mm. The FE results show strong correlation of growth with the changes in maximum fiber stress (PCN = 0.5471, SCN = 0.5111) and changes in the mean sheet-normal stress (PCN = 0.5266, SCN = 0.5256). Myocardial stretches, however, do not have good correlation with growth.

Conclusion

These results suggest that fiber stress is the mechanical stimuli for LV growth in pressure-overload.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Norton JM (2001) Toward consistent definitions for preload and afterload. Am. J. Physiol. - Adv. Physiol. Educ, TOWARD CONSISTENT DEFINITIONS FOR PRELOAD AND AFTERLOAD

  2. Otto CM (2006) Valvular Aortic Stenosis. In: Valvular Aortic Stenosis. Disease Severity and Timing of Intervention. J. Am. Coll, Cardiol

    Chapter  Google Scholar 

  3. Rosenhek R, Binder T, Porenta G, Lang I, Christ G, Schemper M, Maurer G, Baumgartner H (2000) Predictors of outcome in severe, asymptomatic aortic stenosis. N Engl J Med 343:611–617. https://doi.org/10.1056/NEJM200008313430903

    Article  Google Scholar 

  4. McCrossan ZA, Billeter R, White E (2004) Transmural changes in size, contractile and electrical properties of SHR left ventricular myocytes during compensated hypertrophy. Cardiovasc Res 63:283–292. https://doi.org/10.1016/j.cardiores.2004.04.013

    Article  Google Scholar 

  5. Kichi S, Kawamura K (1991) Architecture of myocardial cells in human cardiac ventricles with concentric and eccentric hypertrophy as demonstrated by quantitative scanning electron microscopy. Heart Vessel 6:129–142. https://doi.org/10.1007/BF02058278

    Article  Google Scholar 

  6. Grossman W, Jones D, McLaurin LP (1975) Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest 56:56–64. https://doi.org/10.1172/JCI108079

    Article  Google Scholar 

  7. Pardo Mindán FJ, Panizo A (1993) Alterations in the extracellular matrix of the myocardium in essential hypertension. Eur Heart J

  8. Carruth ED, McCulloch AD, Omens JH (2016) Transmural gradients of myocardial structure and mechanics: implications for fiber stress and strain in pressure overload. Prog Biophys Mol Biol 122:215–226

    Article  Google Scholar 

  9. Grossman W (1980) Cardiac hypertrophy: useful adaptation or pathologic process? Am J Med 69:576–584

    Article  Google Scholar 

  10. Tamura T, Onodera T, Said S, Gerdes AM (1998) Correlation of myocyte lengthening to chamber dilation in the spontaneously hypertensive heart failure (SHHF) rat. J Mol Cell Cardiol 30:2175–2181. https://doi.org/10.1006/jmcc.1998.0775

    Article  Google Scholar 

  11. Jalil JE, Doering CW, Janicki JS et al (1988) Structural vs. contractile protein remodeling and myocardial stiffness in hypertrophied rat left ventricle. J Mol cell Cardiol. https://doi.org/10.1016/0022-2828(88)90597-4

  12. Yin FC (1981) Ventricular wall stress. Circ Res 49:829–842. https://doi.org/10.1161/01.RES.49.4.829

    Article  Google Scholar 

  13. Shoucri RM (2000) Active and passive stresses in the myocardium. Am J Physiol Heart Circ Physiol 279:H2519–H2528. https://doi.org/10.1152/ajpheart.2000.279.5.h2519

    Article  Google Scholar 

  14. Yang H, Schmidt LP, Wang Z, Yang X, Shao Y, Borg TK, Markwald R, Runyan R, Gao BZ (2016) Dynamic Myofibrillar remodeling in live Cardiomyocytes under static stretch. Sci Rep 6. https://doi.org/10.1038/srep20674

  15. Göktepe S, Abilez OJ, Kuhl E (2010) A generic approach towards finite growth with examples of athlete’s heart, cardiac dilation, and cardiac wall thickening. J Mech Phys Solids 58:1661–1680. https://doi.org/10.1016/j.jmps.2010.07.003

    Article  MathSciNet  MATH  Google Scholar 

  16. Göktepe S, Abilez OJ, Parker KK, Kuhl E (2010) A multiscale model for eccentric and concentric cardiac growth through sarcomerogenesis. J Theor Biol 265:433–442. https://doi.org/10.1016/j.jtbi.2010.04.023

    Article  MATH  Google Scholar 

  17. Rausch MK, Dam A, Göktepe S et al (2011) Computational modeling of growth: systemic and pulmonary hypertension in the heart. Biomech Model Mechanobiol 10:799–811. https://doi.org/10.1007/s10237-010-0275-x

    Article  Google Scholar 

  18. Kerckhoffs RCP, Omens J, McCulloch AD (2012) A single strain-based growth law predicts concentric and eccentric cardiac growth during pressure and volume overload. Mech Res Commun 42:40–50. https://doi.org/10.1016/j.mechrescom.2011.11.004

    Article  Google Scholar 

  19. Yoshida K, McCulloch AD, Omens JH, Holmes JW (2019) Predictions of hypertrophy and its regression in response to pressure overload. Biomech Model Mechanobiol 19:1079–1089. https://doi.org/10.1007/s10237-019-01271-w

    Article  Google Scholar 

  20. Finsberg H, Xi C, Le Tan J et al (2018) Efficient estimation of personalized biventricular mechanical function employing gradient-based optimization. Int j numer method biomed eng:34. https://doi.org/10.1002/cnm.2982

  21. Streeter DD, Spotnitz HM, Patel DP et al (1969) Fiber orientation in the canine left ventricle during diastole and systole. Circ Res 24:339–347. https://doi.org/10.1161/01.RES.24.3.339

    Article  Google Scholar 

  22. Bayer JD, Blake RC, Plank G, Trayanova NA (2012) A novel rule-based algorithm for assigning myocardial fiber orientation to computational heart models. Ann Biomed Eng 40:2243–2254. https://doi.org/10.1007/s10439-012-0593-5

    Article  Google Scholar 

  23. Westerhof N, Lankhaar JW, Westerhof BE (2009) The arterial windkessel. Med Biol Eng Comput 47:131–141

    Article  Google Scholar 

  24. Guccione JM, McCulloch AD, Waldman LK (1991) Passive material properties of intact ventricular myocardium determined from a cylindrical model. J Biomech Eng 113:42–55

    Article  Google Scholar 

  25. Guccione J, Mcculloch A (1993) Mechanics of Actiwe contraction in cardiac muscle : part I — constitutive relations for Fiber stress that describe deactivation. J Biomech Eng:73–81

  26. Guccione JM, Waldman LK, McCulloch AD (1993) Mechanics of Actiwe contraction in cardiac muscle : part II — cylindrical models of the systolic left ventricle. J Biomech Eng 115:82–90

    Article  Google Scholar 

  27. Arumugam J, Mojumder J, Kassab G, Lee LC (2019) Model of anisotropic reverse cardiac growth in mechanical Dyssynchrony. Sci Rep 9:12670. https://doi.org/10.1038/s41598-019-48670-8

    Article  Google Scholar 

  28. Shavik SM, Jiang Z, Baek S, Lee LC (2018) High spatial resolution multi-organ finite element modeling of ventricular-arterial coupling. Front Physiol 9. https://doi.org/10.3389/fphys.2018.00119

  29. Alnæs M, Blechta J, Hake J, et al (2015) The FEniCS Project Version 1.5. Arch Numer Softw 3:. https://doi.org/10.11588/ANS.2015.100.20553

  30. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan TJ, Verani MS (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. J Cardiovasc Magn Reson 4:203–210. https://doi.org/10.1081/JCMR-120003946

    Article  Google Scholar 

  31. Gyöngyösi M, Pavo N, Lukovic D, Zlabinger K, Spannbauer A, Traxler D, Goliasch G, Mandic L, Bergler-Klein J, Gugerell A, Jakab A, Szankai Z, Toth L, Garamvölgyi R, Maurer G, Jaisser F, Zannad F, Thum T, Bátkai S, Winkler J (2017) Porcine model of progressive cardiac hypertrophy and fibrosis with secondary postcapillary pulmonary hypertension. J Transl Med 15:202. https://doi.org/10.1186/s12967-017-1299-0

    Article  Google Scholar 

  32. Sorensen M, Hasenkam JM, Jensen H, Sloth E (2011) Subcoronary versus supracoronary aortic stenosis. An experimental evaluation J Cardiothorac Surg 6. https://doi.org/10.1186/1749-8090-6-100

  33. Aoyagi T, Mirsky I, Flanagan MF et al (1992) Myocardial function in immature and mature sheep with pressure-overload hypertrophy. Am J Phys 262:H1036–H1048

    Google Scholar 

  34. Aoyagi T, Fujii AM, Flanagan MF, Arnold LW, Brathwaite KW, Colan SD, Mirsky I (1993) Transition from compensated hypertrophy to intrinsic myocardial dysfunction during development of left ventricular pressure-overload hypertrophy in conscious sheep: systolic dysfunction precedes diastolic dysfunction. Circulation. 88:2415–2425. https://doi.org/10.1161/01.CIR.88.5.2415

    Article  Google Scholar 

  35. Merino D, Gil A, Gómez J, Ruiz L, Llano M, García R, Hurlé MA, Nistal JF (2018) Experimental modelling of cardiac pressure overload hypertrophy: modified technique for precise, reproducible, safe and easy aortic arch banding-debanding in mice. Sci Rep 8:3167. https://doi.org/10.1038/s41598-018-21548-x

    Article  Google Scholar 

  36. Ishikawa K, Aguero J, Oh JG, Hammoudi N, A. Fish L, Leonardson L, Picatoste B, Santos-Gallego CG, M. Fish K, Hajjar RJ (2015) Increased stiffness is the major early abnormality in a pig model of severe aortic stenosis and predisposes to congestive heart failure in the absence of systolic dysfunction. J Am Heart Assoc:4. https://doi.org/10.1161/JAHA.115.001925

  37. Charles CJ, Lee P, Li RR, Yeung T, Ibraham Mazlan SM, Tay ZW, Abdurrachim D, Teo XQ, Wang WH, Kleijn DPV, Cozzone PJ, Lam CSP, Richards AM (2020) A porcine model of heart failure with preserved ejection fraction: magnetic resonance imaging and metabolic energetics. ESC Hear Fail 7:93–103. https://doi.org/10.1002/ehf2.12536

    Article  Google Scholar 

  38. Lee LC, Kassab GS, Guccione JM (2016) Mathematical modeling of cardiac growth and remodeling. Wiley Interdiscip Rev Syst Biol Med 8:211–226. https://doi.org/10.1002/wsbm.1330

    Article  Google Scholar 

  39. Ambrosi D, Ateshian GA, Arruda EM et al (2011) Perspectives on biological growth and remodeling. J Mech Phys Solids 59:863–883. https://doi.org/10.1016/j.jmps.2010.12.011

    Article  MathSciNet  MATH  Google Scholar 

  40. Cowin SC (2004) Tissue growth and remodeling. Annu Rev Biomed Eng 6:77–107. https://doi.org/10.1146/annurev.bioeng.6.040803.140250

    Article  Google Scholar 

  41. Maksuti E, Westerhof BE, Ugander M, Donker DW, Carlsson M, Broomé M (2019) Cardiac remodeling in aortic and mitral valve disease: a simulation study with clinical validation. J Appl Physiol 126:1377–1389. https://doi.org/10.1152/japplphysiol.00791.2018

    Article  Google Scholar 

  42. Carasso S, Cohen O, Mutlak D, Adler Z, Lessick J, Reisner SA, Rakowski H, Bolotin G, Agmon Y (2009) Differential effects of afterload on left ventricular long- and short-axis function: insights from a clinical model of patients with aortic valve stenosis undergoing aortic valve replacement. Am Heart J 158:540–545. https://doi.org/10.1016/j.ahj.2009.07.008

    Article  Google Scholar 

  43. Leonardi B, Margossian R, Sanders SP, Chinali M, Colan SD (2014) Ventricular mechanics in patients with aortic valve disease: longitudinal, radial, and circumferential components. Cardiol Young 24:105–112. https://doi.org/10.1017/S1047951112002326

    Article  Google Scholar 

  44. Ozkan A, Kapadia S, Tuzcu M, Marwick TH (2011) Assessment of left ventricular function in aortic stenosis. Nat Rev Cardiol 8:494–501. https://doi.org/10.1038/nrcardio.2011.80

    Article  Google Scholar 

  45. Crozatier B, Caillet D, Bical O (1984) Left ventricular adaptation to sustained pressure overload in the conscious dog. Circ Res 54:21–29. https://doi.org/10.1161/01.RES.54.1.21

    Article  Google Scholar 

  46. McCain ML, Parker KK (2011) Mechanotransduction: the role of mechanical stress, myocyte shape, and cytoskeletal architecture on cardiac function. Pflugers Arch 462:89–104. https://doi.org/10.1007/s00424-011-0951-4

    Article  Google Scholar 

  47. Lyon RC, Zanella F, Omens JH, Sheikh F (2015) Mechanotransduction in cardiac hypertrophy and failure. Circ Res 116:1462–1476. https://doi.org/10.1161/CIRCRESAHA.116.304937

    Article  Google Scholar 

  48. Ruwhof C, Van Der Laarse A (2000) Mechanical stress-induced cardiac hypertrophy: mechanisms and signal transduction pathways. Cardiovasc Res 47:23–37

    Article  Google Scholar 

  49. Streeter DD, Bassett DL (1966) An engineering analysis of myocardial fiber orientation in pig’s left ventricle in systole. Anat Rec 155(4):503–511. https://doi.org/10.1002/ar.1091550403

    Article  Google Scholar 

  50. Papadacci C, Finel V, Provost J, Villemain O, Bruneval P, Gennisson JL, Tanter M, Fink M, Pernot M (2017) Imaging the dynamics of cardiac fiber orientation in vivo using 3D ultrasound backscatter tensor imaging. Sci Rep 7(1):830. https://doi.org/10.1038/s41598-017-00946-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. C. Lee.

Ethics declarations

This work is supported by National Institutes of Health grants (R01 HL134841 and U01 HL133359) and AHA SDG (17SDG33370110) grant as well as Singapore National Medical Research Council grants (NMRC/BnB/0017/2015; NMRC/OFIRG/0018/2016; MOH-000358). The authors declare that they have no conflicts of interest. All applicable international, national and institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A (Mesh Sensitivity Analysis)

Calibrated Model Parameters

Model Prediction and Correlation Coefficients of Each Pig Model

Sensitivity Analysis of Changes in Fiber Angles

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mojumder, J., Choy, J.S., Leng, S. et al. Mechanical Stimuli for Left Ventricular Growth During Pressure Overload. Exp Mech 61, 131–146 (2021). https://doi.org/10.1007/s11340-020-00643-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-020-00643-z

Keywords

Navigation