Skip to main content

Advertisement

Log in

Artificial flooding changes soil chemistry and carbon dynamics in upland forests next to hydropower plant in Amazon basin

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Upland forest cover in the Amazon basin has been reduced by land use changes, e.g., the establishment of hydropower plants. Such plants cause permanent flooding and may produce periodic flooding in adjacent upland forests. We determined the short- and long-term effects of artificial flooding on the soil chemistry of upland forests adjacent to the Balbina Hydroelectric Reservoir, Amazonas State, Brazil. We randomized 20 sampling units in upland forests located on the banks of streams adjacent to the hydropower plant. Each sampling unit consisted of two paired forests: one artificial “flooded forest” near the stream and an unflooded “control forest.” We performed soil chemical analyses to determine the pH and total organic C, N, Al3+, and nutrient levels (P, Ca, Mg, and K). In the short term, flooding caused soil acidification, C loss, and increased soil nutrient availability, but this effect did not occur in the long term. In the long term, soil acidity decreased, C loss occurred, and available N cumulatively decreased because of annual flooding after the impoundment of the reservoir. These cumulative N losses, associated with high C emissions, may alter the regional climate and contribute to global climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. L. M., & Sparovek, G. (2013). Koppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711–728.

    Article  Google Scholar 

  • Amaral, I. L., Matos, F. D. A., & Lima, J. (2000). Composição florística e parâmetros estruturais de um hectare de floresta densa de terra firme no rio Uatumã, Amazônia, Brazil. Acta Amazonica, 30(3), 377–392.

    Article  Google Scholar 

  • Brazil MME (2014). Plano decenal de expansão de energia 2023 (2v). Brasília: Ministério das Minas e Energia, Empresa de Pesquisa Energética.

  • Brevik, E. C., Cerdà, A., Mataix-Solera, J., Pereg, L., Quinton, J. N., Six, J., et al. (2015). The interdisciplinary nature of SOIL. SOIL, 1(1), 117–129.

    Article  Google Scholar 

  • Camargo, F. A. O., Santos, G. A., & Zonta, E. (1999). Alterações eletroquímicas em solos inundados. Ciência Rural, 29(1), 171–180.

    Article  Google Scholar 

  • Costa, F. R. C., Espinelli, F. P., & Figueiredo, F. O. G. (2008). Guide to the marantaceae of the reserva ducke and reserva biológica do uatumã. Manaus: Editora INPA.

    Google Scholar 

  • Chave, J., Navarrete, D., Almeida, S., Álvarez, E., Aragão, L. E. O. C., Bonal, D., et al. (2010). Regional and seasonal patterns of litterfall in tropical South America. Biogeosciences, 7(1), 43–55. https://doi.org/10.5194/bg-7-43-2010.

    Article  Google Scholar 

  • Cleveland, C. C., Reed, S. C., & Townsend, A. R. (2006). Nutrient regulation of organic matter decomposition in a tropical rain forest. Ecology, 87(2), 492–503. https://doi.org/10.1890/05-0525.

    Article  Google Scholar 

  • Dat, J. F., Capelli, N., Folzer, H., Bourgeade, P., & Badot, P. (2004). Sensing and signalling during plant flooding. Plant Physiology and Biochemistry, 42(4), 273–282. https://doi.org/10.1016/j.plaphy.2004.02.003.

    Article  CAS  Google Scholar 

  • Donagema, K. G., Campos, D. V. B., Calderano, S. B., Teixeira, W. G., & Viana, J. H. M. (2011). Manual de métodos de análise de solo. Rio de Janeiro: Embrapa Solos.

    Google Scholar 

  • Esteves, F. A., & Camargo, A. F. M. (1986). Sobre o papel das macrófitas aquáticas na estocagem e ciclagem de nutrientes. Acta Limnologica Brasilica, 1, 273–298.

    Google Scholar 

  • Fearnside, P. M. (2005). Brazil's Samuel Dam: lessons for hydroelectric development policy and the environment in Amazonia. Environmental Management, 35(1), 1–19. https://doi.org/10.1007/s00267-004-0100-3.

    Article  Google Scholar 

  • Fearnside, P. M. (2016a). Environmental and social impacts of hydroelectric dams in Brazilian Amazonia: implications for the aluminum industry. World Development, 77, 48–65. https://doi.org/10.1016/j.worlddev.2015.08.015.

    Article  Google Scholar 

  • Fearnside, P. M. (2016b). Greenhouse gas emissions from Brazil’s Amazonian hydroelectric dams. Environmental Research Letters, 11(1), 1002–1004. https://doi.org/10.1088/1748-9326/11/1/011002.

    Article  CAS  Google Scholar 

  • Fisher, T. R. (1978). Plancton e produção primária em sistemas aquáticos da Bacia da Amazônia Central. Acta Amazonica, 8(4), 43–54.

    Article  Google Scholar 

  • Gimenes, K. Z., Cunha-Santino, M. B., & Bianchini, I., Jr. (2010). Decomposição de matéria orgânica alóctone e autóctone em ecossistemas aquáticos. Oecologia Australis, 14(4), 1036–1073.

    Article  Google Scholar 

  • Greenberg, J. P. (2012). LBA-ECO TG-02 Biogenic VOC emissions from Brazilian Amazon Forest and pasture sites. Data set. Oak Ridge National Laboratory Distributed Active Archive Center. Tennessee: Oak Ridge. https://doi.org/10.3334/ORNLDAAC/1110.

  • Harper, D. A. T., & Ryan, P. D. (1987). PALSTAT. A statistical package for palaeontologists. Scotland: Lochee Publications and the Palaeontological Association.

    Google Scholar 

  • Ibama (1997). Instituto Brasileiro de Meio Ambiente e Recursos Naturais Renováveis. Plano de Manejo Fase 1: Reserva Biológica do Uatumã. Brasília: Eletronorte/Ibama.

  • Kemenes, A., Forsberg, B. R., & Melack, J. M. (2007). Methane release below a tropical hydroelectric dam. Geophysical Research Letters, 34(12), 1–5. https://doi.org/10.1029/2007GL029479.

    Article  CAS  Google Scholar 

  • Kern, J., Kreibich, H., Koschorreck, M., & Darwich, A. (2010). Nitrogen balance of a floodplain forest of the Amazon river: the role of nitrogen fixation. In W. J. Junk, M. Piedade, F. Wittmann, J. Schöngart, & P. Parolin (Eds.), Amazonian floodplain forests (analysis and synthesis). New York: Springer.

    Google Scholar 

  • Keesstra, S. D., Van Huissteden, J., Vandenberghe, J., Van Dam, O., Gier, J., & Pleizier, I. D. (2005). Evolution of the morphology of the river Dragonja (SW Slovenia) due to land-use changes. Geomorphology, 69(1–4), 191–207.

    Article  Google Scholar 

  • Keesstra, S. D., Bouma, J., Wallinga, J., Tittonell, P., Smith, P., Cerdà, A., et al. (2016). The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. SOIL, 2(2), 111–128.

    Article  Google Scholar 

  • Lima, H. N., Mello, J. W. V., Schaefer, C. E., & Ker, J. K. (2005). Dinâmica da mobilização de elementos em solos da Amazônia submetidos à inundação. Acta Amazonica, 35(3), 317–330. https://doi.org/10.1590/S0044-59672005000300003.

    Article  CAS  Google Scholar 

  • Liu, Z., Yao, Z., Huang, H., Wu, S., & Liu, G. (2014). Land use and climate changes and their impacts on runoff in the Yarlung Zangbo river basin, China. Land Degradation and Development, 25(3), 203–215.

    Article  Google Scholar 

  • Luizão, F. J., Luizão, R. C. C., & Proctor, J. (2007). Soil acidity and nutrient deficiency in central Amazonian heath forest soils. Plant Ecology, 192(2), 209–224.

    Article  Google Scholar 

  • Luizão, R. C. C., Luizão, F. J., Paiva, R. Q., Monteiro, T. F., Sousa, L. S., & Kruijt, B. (2004). Variation of carbon and nitrogen cycling processes along a topographic gradient in a central Amazonian Forest. Global Change Biology, 10(5), 592–600. https://doi.org/10.1111/j.1529-8817.2003.00757.x.

    Article  Google Scholar 

  • Maavara, T., Chen, Q., Van Meter, K., Brown, L. E., Zhang, J., Ni, J., et al. (2020). River dam impacts on biogeochemical cycling. Nature Reviews Earth & Environment, 1, 103–116. https://doi.org/10.1038/s43017-019-0019-0.

    Article  Google Scholar 

  • Pereira, G. H. A. (2013). Ciclagem de Nutrientes e Atributos Químicos do Solo de Florestas de Terra Firme Alagadas pela hidrelétrica de Balbina, Reserva Biológica do Uatumã, Amazônia Central, Brasil (Dissertação de Mestrado) Universidade Federal Rural do Rio de Janeiro (p 83).

  • Pereira, G. H. A., Jordão, H. C. K., Silva, V. F. V., & Pereira, M. G. (2016). Litter and nutrient flows in tropical upland forest flooded by a hydropower plant in the Amazonian basin. Science of the Total Environment, 572, 157–168. https://doi.org/10.1016/j.scitotenv.2016.07.177.

    Article  CAS  Google Scholar 

  • Quesada, C. A., Lloyd, J., Anderson, L. O., Fyllas, N. M., Schwarz, M., & Czimczik, C. I. (2011). Soils of Amazonia with particular reference to the RAINFOR sites. Biogeosciences, 8, 1415–1440. https://doi.org/10.5194/bg-8-1415-2011.

    Article  CAS  Google Scholar 

  • Souza, R. O., Vahl, L. C., & Otero, X. L. (2009). Química dos solos alagados. In V. F. Melo & L. R. F. Alleoni (Eds.), Química e Mineralogia do Solo. SBCS: Viçosa.

    Google Scholar 

  • Tedesco, M. J., Gianello, C., Bissani, C. A., Bohnen, H., & Volkweiss, S. J. (1995). Análises de solo, plantas e outros materiais. Boletim Técnico, No. 5 (2nd ed.). Porto Alegre: UFRS.

    Google Scholar 

  • Unger, M. I., Motavalli, P. P., & Muzika, R. M. (2009). Changes in soil chemical properties with flooding: a field laboratory approach. Agriculture, Ecosystems and Environment, 131(1–2), 105–110. https://doi.org/10.1016/j.agee.2008.09.013.

    Article  CAS  Google Scholar 

  • Wang, F., Maberly, S. C., Wang, B., & Liang, X. (2018). Effects of dams on riverine biogeochemical cycling and ecology. Inland Waters, 8(2), 130–140. https://doi.org/10.1080/20442041.2018.1469335.

    Article  CAS  Google Scholar 

  • Winton, R. S., Calamita, E., & Wehrli, B. (2019). Reviews and syntheses: dams, water quality and tropical reservoir stratification. Biogeosciences, 16, 1657–1671. https://doi.org/10.5194/bg-16-1657-2019.

    Article  CAS  Google Scholar 

  • Wittmann, F., Schöngart, J., Brito, J. M., Wittmann, A. O., Piedade, M. T. F., Parolin, P., et al. (2010). Manual of trees from Central Amazonian varzea floodplains: taxonomy, ecology and use. Manaus: Editora INPA.

    Google Scholar 

  • Yeomans, J. C., & Bremner, J. M. (1988). A rapid and precise method for routine determination of organic carbon in soil. Communications in Soil Science and Plant Analysis, 19(13), 1467–1476.

    Article  CAS  Google Scholar 

  • Zanchi, F. B., Waterloo, M. J., Dolman, A. J., Groenendijk, M., Kesselmeier, J., Kruijt, B., et al. (2011). Influence of drainage status on soil and water chemistry, litter decomposition and soil respiration in central Amazonian forests on sandy soils. Revista Ambiente & Água, 6(1), 6–29.

    Article  Google Scholar 

  • Zhang, D., Wu, J., Yang, F., Chen, Q., Feng, J., Li, Q., et al. (2020). Linkages between soil organic carbon fractions and carbon-hydrolyzing enzyme activities across riparian zones in the three Gorges of China. Scientific Reports, 10, 8433. https://doi.org/10.1038/s41598-020-65200-z.

    Article  CAS  Google Scholar 

  • Zupanc, V., Kammerer, G., Grčman, H., Šantavec, I., Cvejić, R., & Pintar, M. (2016). Recultivation of agricultural land impaired by construction of a hydropower plant on the Sava River. Slovenia. Land Degradation and Development, 27(2), 406–415.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the Brazilian Government for financing the research through the Instituto Chico Mendes de Conservação da Biodiversidade and Reserva Biológica do Uatumã for granting a masters scholarship to the first author through the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; the Universidade Federal Rural do Rio de Janeiro for financing the research through the Post-Graduate Program of Environmental and Forest Science; and Francisco das Chagas, Efraim Assunção, Matheus Bastos, and Joelson Nogueira for support during field collections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilherme Henrique Almeida Pereira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, G.H.A., Silva, V.F.V., Camara, R. et al. Artificial flooding changes soil chemistry and carbon dynamics in upland forests next to hydropower plant in Amazon basin. Environ Dev Sustain 23, 7537–7549 (2021). https://doi.org/10.1007/s10668-020-00931-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-020-00931-7

Keywords

Navigation