Skip to main content

Advertisement

Log in

An Overview of Snow Albedo Sensitivity to Black Carbon Contamination and Snow Grain Properties Based on Experimental Datasets Across the Northern Hemisphere

  • Air Pollution (H Zhang and Y Sun, Section Editors)
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Black carbon (BC) deposition in snow can trigger a significant reduction in snow albedo and accelerate snowmelt. As a result, numerous snow surveys have performed to measure BC concentrations in snow across the polar regions, the Tibetan Plateau, and other high-mountain regions. This review is aimed to synthesize the current progresses of the potential feedbacks of snow albedo and its sensitivity by BC in snow across the Northern Hemisphere.

Recent Findings

Generally, BC concentrations in snow are highest in the mid-latitudes of Northern China and North America, and reduce toward higher latitudes (e.g., Greenland and the rest of the Arctic). We found that the snow albedo reduction attributed to low BC contamination (< 20 ng g−1) in older snow (200 μm snow grains) is 1.2%, compared with 0.6% in fresh snow (50 μm snow grains). Non-spherical snow grains exhibit a significantly lower snow albedo reduction (2–6%) due to BC contamination compared with spherical snow grains with 100–500 ng g−1 of BC in the snowpack. Snow–BC–internal mixing reduces the snow albedo (< 10%) more substantially than does external mixing in the case of 50–200 μm snow grains and a given BC concentration (< 2000 ng g−1).

Summary

Besides the BC and other light-absorbing particles (LAPs), the mixing state of LAPs in snow, snow grain properties, and the scavenging\washing effects are also major challenges in determining snow albedo, which need to be further investigated on a global scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brandt RE, Warren SG, Clarke AD. A controlled snowmaking experiment testing the relation between black carbon content and reduction of snow albedo. J Geophys Res-Atmos. 2011;116.

  2. Hadley OL, Kirchstetter TW. Black-carbon reduction of snow albedo. Nat Clim Chang. 2012;2(6):437–40.

    CAS  Google Scholar 

  3. Dery SJ, Brown RD. Recent Northern Hemisphere snow cover extent trends and implications for the snow-albedo feedback. Geophys Res Lett. 2007;34(22).

  4. Flanner MG, Zender CS, Hess PG, Mahowald NM, Painter TH, Ramanathan V, et al. Springtime warming and reduced snow cover from carbonaceous particles. Atmos Chem Phys. 2009;9(7):2481–97.

    CAS  Google Scholar 

  5. Hall A, Qu X. Using the current seasonal cycle to constrain snow albedo feedback in future climate change. Geophys Res Lett. 2006;33(3).

  6. Qian Y, Yasunari TJ, Doherty SJ, Flanner MG, Lau WKM, Ming J, et al. Light-absorbing particles in snow and ice: measurement and modeling of climatic and hydrological impact. Adv Atmos Sci. 2015;32(1):64–91.

    CAS  Google Scholar 

  7. He CL, Flanner MG, Chen F, Barlage M, Liou KN, Kang SC, et al. Black carbon-induced snow albedo reduction over the Tibetan Plateau: uncertainties from snow grain shape and aerosol-snow mixing state based on an updated SNICAR model. Atmos Chem Phys. 2018;18(15):11507–27.

    CAS  Google Scholar 

  8. Skiles SM, Painter T. Daily evolution in dust and black carbon content, snow grain size, and snow albedo during snowmelt, Rocky Mountains, Colorado. J Glaciol. 2017;63(237):118–32.

    Google Scholar 

  9. Jacobson MZ. Climate response of fossil fuel and biofuel soot, accounting for soot’s feedback to snow and sea ice albedo and emissivity. J Geophys Res-Atmos. 2004;109(D21).

  10. Yasunari TJ, Koster RD, Lau KM, Aoki T, Sud YC, Yamazaki T, et al. Influence of dust and black carbon on the snow albedo in the NASA Goddard Earth Observing System version 5 land surface model. J Geophys Res-Atmos. 2012;117.

  11. Yasunari TJ, Koster RD, Lau WKM, Kim KM. Impact of snow darkening via dust, black carbon, and organic carbon on boreal spring climate in the Earth system. J Geophys Res-Atmos. 2015;120(11):5485–503.

    Google Scholar 

  12. Andreae MO. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmospheric Chemistry & Physics. 2006;6(10):3131–48.

    CAS  Google Scholar 

  13. Andreae MO, Ramanathan V. Climate’s dark forcings. Science. 2013;340(6130):280–1.

    CAS  Google Scholar 

  14. Bond TC, Doherty SJ, Fahey DW, Forster PM, Berntsen T, DeAngelo BJ, et al. Bounding the role of black carbon in the climate system: a scientific assessment. J Geophys Res-Atmos. 2013;118(11):5380–552.

    CAS  Google Scholar 

  15. Flanner MG. Arctic climate sensitivity to local black carbon. J Geophys Res-Atmos. 2013;118(4):1840–51.

    CAS  Google Scholar 

  16. Qian Y, Wang HL, Zhang RD, Flanner MG, Rasch PJ. A sensitivity study on modeling black carbon in snow and its radiative forcing over the Arctic and Northern China. Environmental Research Letters. 2014;9(6).

  17. Hansen J, Nazarenko L. Soot climate forcing via snow and ice albedos. P Natl Acad Sci USA. 2004;101(2):423–8.

    CAS  Google Scholar 

  18. Stocker T, Qin D, Plattner G, Tignorand M, Allen S, Boschungand J et al. IPCC 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK; 2013.

  19. Wiscombe WJ, Warren SG. A Model for the spectral albedo of snow .1. Pure snow. J Atmos Sci. 1980;37(12):2712–33.

    Google Scholar 

  20. Clarke AD, Noone KJ. Soot in the Arctic snowpack - a cause for perturbations in radiative-transfer. Atmos Environ. 1985;19(12):2045–53.

    Google Scholar 

  21. Doherty SJ, Warren SG, Grenfell TC, Clarke AD, Brandt RE. Light-absorbing impurities in Arctic snow. Atmos Chem Phys. 2010;10(23):11647–80.

    CAS  Google Scholar 

  22. Dome F Ice Core Research Group. Preliminary investigation of palaeoclimate signals recorded in the ice core from Dome Fuji station, east Dronning Maud Land, Antarctica. AnnGlaciol. 1998;27:338–42.

    Google Scholar 

  23. Motoyoshi H, Aoki T, Hori M, Abe O, Mochizuki S. Possible effect of anthropogenic aerosol deposition on snow albedo reduction at Shinjo. Japan J Meteorol Soc Jpn. 2005;83A:137–48.

    Google Scholar 

  24. Dumont M, Brun E, Picard G, Michou M, Libois Q, Petit JR, et al. Contribution of light-absorbing impurities in snow to Greenland’s darkening since 2009. Nat Geosci. 2014;7(7):509–12.

    CAS  Google Scholar 

  25. Hagler GSW, Bergin MH, Smith EA, Dibb JE, Anderson C, Steig EJ. Particulate and water-soluble carbon measured in recent snow at Summit, Greenland. Geophys Res Lett 2007;34(16):5.

  26. Hegg DA, Warren SG, Grenfell TC, Doherty SJ, Larson TV, Clarke AD. Source attribution of black carbon in Arctic snow. Environ Sci Technol. 2009;43(11):4016–21.

    CAS  Google Scholar 

  27. Polashenski CM, Dibb JE, Flanner MG, Chen JY, Courville ZR, Lai AM, et al. Neither dust nor black carbon causing apparent albedo decline in Greenland’s dry snow zone: implications for MODIS C5 surface reflectance. Geophys Res Lett. 2015;42(21):9319–27.

    Google Scholar 

  28. Painter TH, Flanner MG, Kaser G, Marzeion B, VanCuren RA, Abdalati W. End of the Little Ice Age in the Alps forced by industrial black carbon. P Natl Acad Sci USA. 2013;110(38):15216–21.

    CAS  Google Scholar 

  29. Sigl M, Abram NJ, Gabrieli J, Jenk TM, Osmont D, Schwikowski M. 19th century glacier retreat in the Alps preceded the emergence of industrial black carbon deposition on high-alpine glaciers. Cryosphere. 2018;12(10):3311–31.

    Google Scholar 

  30. Aoki T, Kuchiki K, Niwano M, Kodama Y, Hosaka M, Tanaka T. Physically based snow albedo model for calculating broadband albedos and the solar heating profile in snowpack for general circulation models. J Geophys Res-Atmos. 2011;116.

  31. Dang C, Fu Q, Warren SG. Effect of snow grain shape on snow albedo. J Atmos Sci. 2016;73(9):3573–83.

    Google Scholar 

  32. Flanner MG, Zender CS, Randerson JT, Rasch PJ. Present-day climate forcing and response from black carbon in snow. Journal of Geophysical Research. 2007;112(D11).

  33. Goelles T, Bøggild CE. Albedo reduction of ice caused by dust and black carbon accumulation: a model applied to the K-transect. West Greenland J Glaciol. 2017;63(242):1063–76.

    Google Scholar 

  34. He C, Liou K-N, Takano Y, Chen F, Barlage M. Enhanced snow absorption and albedo reduction by dust-snow internal mixing: modeling and parameterization. J Adv Model Earth Sy. 2019;n/a(n/a).

  35. Kaspari S, Painter TH, Gysel M, Skiles SM, Schwikowski M. Seasonal and elevational variations of black carbon and dust in snow and ice in the Solu-Khumbu, Nepal and estimated radiative forcings. Atmos Chem Phys. 2014;14(15):8089–103.

    Google Scholar 

  36. Kaspari SD, Schwikowski M, Gysel M, Flanner MG, Kang S, Hou S, et al. Recent increase in black carbon concentrations from a Mt. Everest ice core spanning 1860–2000 AD. Geophys Res Lett. 2011;38(4).

  37. Pedersen CA, Gallet JC, Ström J, Gerland S, Hudson SR, Forsström S, et al. In situ observations of black carbon in snow and the corresponding spectral surface albedo reduction. Journal of Geophysical Research: Atmospheres. 2015;120(4):1476–89.

    CAS  Google Scholar 

  38. Qian Y, Flanner MG, Leung LR, Wang W. Sensitivity studies on the impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate. Atmos Chem Phys. 2011;11(5):1929–48.

    CAS  Google Scholar 

  39. Adolph AC, Albert MR, Lazarcik J, Dibb JE, Amante JM, Price A. Dominance of grain size impacts on seasonal snow albedo at open sites in New Hampshire. Journal of Geophysical Research: Atmospheres. 2017;122(1):121–39.

    Google Scholar 

  40. Doherty SJ, Dang C, Hegg DA, Zhang RD, Warren SG. Black carbon and other light-absorbing particles in snow of central North America. J Geophys Res-Atmos. 2014;119(22):12807–31.

    CAS  Google Scholar 

  41. Dong Z, Kang S, Qin D, Shao Y, Ulbrich S, Qin X. Variability in individual particle structure and mixing states between the glacier–snowpack and atmosphere in the northeastern Tibetan Plateau. Cryosphere. 2018;12(12):3877–90.

    Google Scholar 

  42. Li Y, Kang S, Chen J, Hu Z, Wang K, Paudyal R, et al. Black carbon in a glacier and snow cover on the northeastern Tibetan Plateau: concentrations, radiative forcing and potential source from local topsoil. Sci Total Environ. 2019.

  43. Ming J, Du ZC, Xiao CD, Xu XB, Zhang DQ. Darkening of the mid-Himalaya glaciers since 2000 and the potential causes. Environmental Research Letters. 2012;7(1).

  44. Ming J, Wang PL, Zhao SY, Chen PF. Disturbance of light-absorbing aerosols on the albedo in a winter snowpack of Central Tibet. J Environ Sci-China. 2013;25(8):1601–7.

    Google Scholar 

  45. Wang X, Pu W, Ren Y, Zhang X, Zhang X, Shi J, et al. Observations and model simulations of snow albedo reduction in seasonal snow due to insoluble light-absorbing particles during 2014 Chinese survey. Atmos Chem Phys. 2017;17(3):2279–96.

    CAS  Google Scholar 

  46. Huang J, Fu Q, Zhang W, Wang X, Zhang R, Ye H, et al. Dust and black carbon in seasonal snow across northern China. Bull Am Meteorol Soc. 2011;92(2):175–81.

    Google Scholar 

  47. Wang X, Doherty SJ, Huang J. Black carbon and other light-absorbing impurities in snow across Northern China. Journal of Geophysical Research: Atmospheres. 2013;118(3):1471–92.

    CAS  Google Scholar 

  48. Ye H, Zhang RD, Shi JS, Huang JP, Warren SG, Fu Q. Black carbon in seasonal snow across northern Xinjiang in northwestern China. Environmental Research Letters. 2012;7(4).

  49. Bisiaux MM, Edwards R, McConnell JR, Curran MAJ, Van Ommen TD, Smith AM, et al. Changes in black carbon deposition to Antarctica from two high-resolution ice core records, 1850-2000 AD. Atmos Chem Phys. 2012;12(9):4107–15.

    CAS  Google Scholar 

  50. Chylek P, Srivastava V, Cahenzli L, Pinnick RG, Dod RL, Novakov T, et al. Aerosol and graphitic carbon content of snow. J Geophys Res-Atmos. 1987;92(D8):9801–9.

    CAS  Google Scholar 

  51. Warren SG, Clarke AD. Soot in the atmosphere and snow surface of Antarctica. J Geophys Res-Atmos. 1990;95(D2):1811–6.

    Google Scholar 

  52. Skiles SM, Flanner M, Cook JM, Dumont M, Painter TH. Radiative forcing by light-absorbing particles in snow. Nat Clim Chang. 2018;1.

  53. Wang ZL, Zhang H, Shen XS. Radiative forcing and climate response due to black carbon in snow and ice (vol 28, pg 1336, 2011). Advances in Atmospheric Sciences. 2012;29(3):646-.

  54. Grenfell TC, Doherty SJ, Clarke AD, Warren SG. Light absorption from particulate impurities in snow and ice determined by spectrophotometric analysis of filters. Appl Opt. 2011;50(14):2037–48.

    Google Scholar 

  55. Lin C-I, Baker M, Charlson RJ. Absorption coefficient of atmospheric aerosol: a method for measurement. Appl Opt. 1973;12(6):1356–63.

    CAS  Google Scholar 

  56. Campbell D, Copeland S, Cahill T. Measurement of aerosol absorption-coefficient from Teflon filters using integrating plate and integrating sphere techniques. Aerosol Sci Technol. 1995;22(3):287–92.

    CAS  Google Scholar 

  57. Heintzenberg J. Size-segregated measurements of particulate elemental carbon and aerosol light-absorption at remote Arctic locations. Atmos Environ. 1982;16(10):2461–9.

    CAS  Google Scholar 

  58. Clarke AD. Integrating sandwich: a new method of measurement of the light absorption coefficient for atmospheric particles. Appl Opt. 1982;21(16):3011–20.

    CAS  Google Scholar 

  59. Schwarz JP, Doherty SJ, Li F, Ruggiero ST, Tanner CE, Perring AE, et al. Assessing Single Particle Soot Photometer and Integrating Sphere/Integrating Sandwich Spectrophotometer measurement techniques for quantifying black carbon concentration in snow. Atmospheric Measurement Techniques. 2012;5(11):2581–92.

    CAS  Google Scholar 

  60. Lim S, Fain X, Zanatta M, Cozic J, Jaffrezo JL, Ginot P, et al. Refractory black carbon mass concentrations in snow and ice: method evaluation and inter-comparison with elemental carbon measurement. Atmospheric Measurement Techniques. 2014;7(10):3307–24.

    Google Scholar 

  61. McConnell JR, Edwards R, Kok GL, Flanner MG, Zender CS, Saltzman ES, et al. 20th-century industrial black carbon emissions altered arctic climate forcing. Science. 2007;317(5843):1381–4.

    CAS  Google Scholar 

  62. Stephens TJ, Haste MJ, Towers DP, Thomson MJ, Taghizadeh MR, Jones JDC, et al. Fiber-optic delivery of high-peak-power Q-switched laser pulses for in-cylinder flow measurement. Appl Opt. 2003;42(21):4307–14.

    Google Scholar 

  63. Xu BQ, Cao JJ, Hansen J, Yao TD, Joswia DR, Wang NL, et al. Black soot and the survival of Tibetan glaciers. P Natl Acad Sci USA. 2009;106(52):22114–8.

    CAS  Google Scholar 

  64. Xu BQ, Yao TD, Liu XQ, Wang NL. Elemental and organic carbon measurements with a two-step heating-gas chromatography system in snow samples from the Tibetan Plateau. Ann Glaciol-Ser. 2006;43:257.

    CAS  Google Scholar 

  65. Birch ME, Cary RA. Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust. Aerosol Sci Technol. 1996;25(3):221–41.

    CAS  Google Scholar 

  66. Chow JC, Watson JG, Crow D, Lowenthal DH, Merrifield T. Comparison of IMPROVE and NIOSH carbon measurements. Aerosol Sci Technol. 2001;34(1):23–34.

    CAS  Google Scholar 

  67. Chow JC, Watson JG, Pritchett LC, Pierson WR, Frazier CA, Purcell RG. The DRI thermal optical reflectance carbon analysis system - description, evaluation and applications in US air quality studies. Atmos Environ a-Gen. 1993;27(8):1185–201.

    Google Scholar 

  68. Watson JG, Chow JC. Comparison and evaluation of in situ and filter carbon measurements at the Fresno Supersite. J Geophys Res-Atmos. 2002;107(D21).

  69. Li CL, Yan FP, Kang SC, Chen PF, Han XW, Hu ZF, et al. Re-evaluating black carbon in the Himalayas and the Tibetan Plateau: concentrations and deposition. Atmos Chem Phys. 2017;17(19):11899–912.

    CAS  Google Scholar 

  70. Warren SG, Wiscombe WJ. A model for the spectral slbedo of snow .2. Snow containing atmospheric aerosols. J Atmos Sci. 1980;37(12):2734–45.

    Google Scholar 

  71. Toon OB, Mckay CP, Ackerman TP, Santhanam K. Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple-scattering atmospheres. J Geophys Res-Atmos. 1989;94(D13):16287–301.

    Google Scholar 

  72. He CL, Liou KN, Takano Y, Yang P, Qi L, Chen F. Impact of grain shape and multiple black carbon internal mixing on snow albedo: parameterization and radiative effect analysis. J Geophys Res-Atmos. 2018;123(2):1253–68.

    CAS  Google Scholar 

  73. Hu ZF, Kang SC, Li XF, Li CL, Sillanpaa M. Relative contribution of mineral dust versus black carbon to Third Pole glacier melting. Atmos Environ. 2020;223:117288.

    CAS  Google Scholar 

  74. Li XF, Kang SC, He XB, Qu B, Tripathee L, Jing ZF, et al. Light-absorbing impurities accelerate glacier melt in the Central Tibetan Plateau. Sci Total Environ. 2017;587:482–90.

    Google Scholar 

  75. Zhang YL, Kang SC, Cong ZY, Schmale J, Sprenger M, Li CL, et al. Light-absorbing impurities enhance glacier albedo reduction in the southeastern Tibetan plateau. J Geophys Res-Atmos. 2017;122(13):6915–33.

    Google Scholar 

  76. Zhang YL, Kang SC, Sprenger M, Cong ZY, Gao TG, Li CL, et al. Black carbon and mineral dust in snow cover on the Tibetan Plateau. Cryosphere. 2018;12(2):413–31.

    Google Scholar 

  77. Cachier H, Pertuisot MH. Particulate carbon in Arctic ice. Analusis. 1994;22(7):M34–M7.

    CAS  Google Scholar 

  78. Cong ZY, Kang SC, Qin DH. Seasonal features of aerosol particles recorded in snow from Mt. Qomolangma (Everest) and their environmental implications. J Environ Sci-China. 2009;21(7):914–9.

    CAS  Google Scholar 

  79. Dang C, Hegg DA. Quantifying light absorption by organic carbon in Western North American snow by serial chemical extractions. J Geophys Res-Atmos. 2014;119(17).

  80. Ding YJ, Liu SY, Li J, Shangguan DH. The retreat of glaciers in response to recent climate warming in western China. Ann Glaciol-Ser. 2006;43:97.

    Google Scholar 

  81. Doherty SJ, Steele M, Rigor I, Warren SG. Interannual variations of light-absorbing particles in snow on Arctic sea ice. J Geophys Res-Atmos. 2015;120(21):11391–400.

    Google Scholar 

  82. Dou T, Xiao C, Shindell DT, Liu J, Eleftheriadis K, Ming J, et al. The distribution of snow black carbon observed in the Arctic and compared to the GISS-PUCCINI model. Atmos Chem Phys. 2012;12(17):7995–8007.

    CAS  Google Scholar 

  83. Forsström S, Isaksson E, Skeie RB, Ström J, Pedersen CA, Hudson SR, et al. Elemental carbon measurements in European Arctic snow packs. Journal of Geophysical Research: Atmospheres. 2013;118(24):13,614–13,27.

    Google Scholar 

  84. Gabbi J, Huss M, Bauder A, Cao F, Schwikowski M. The impact of Saharan dust and black carbon on albedo and long-term mass balance of an Alpine glacier. Cryosphere. 2015;9(4):1385–400.

    Google Scholar 

  85. Ming J, Xiao CD, Cachier H, Qin DH, Qin X, Li ZQ, et al. Black Carbon (BC) in the snow of glaciers in west China and its potential effects on albedos. Atmos Res. 2009;92(1):114–23.

    CAS  Google Scholar 

  86. Petit JE, Favez O, Sciare J, Canonaco F, Croteau P, Mocnik G, et al. Submicron aerosol source apportionment of wintertime pollution in Paris, France by double positive matrix factorization (PMF2) using an aerosol chemical speciation monitor (ACSM) and a multi-wavelength Aethalometer. Atmos Chem Phys. 2014;14(24):13773–87.

    Google Scholar 

  87. Pu W, Wang X, Wei HL, Zhou Y, Shi JS, Hu ZY, et al. Properties of black carbon and other insoluble light-absorbing particles in seasonal snow of northwestern China. Cryosphere. 2017;11(3):1213–33.

    Google Scholar 

  88. Rowe PM, Cordero RR, Warren SG, Stewart E, Doherty SJ, Pankow A, et al. Black carbon and other light-absorbing impurities in snow in the Chilean Andes. Sci Rep-Uk. 2019;9(1):4008.

    Google Scholar 

  89. Tuzet F, Dumont M, Arnaud L, Voisin D, Lamare M, Larue F, et al. Influence of light-absorbing particles on snow spectral irradiance profiles. Cryosphere. 2019;13(8):2169–87.

    Google Scholar 

  90. Xu BQ, Cao JJ, Joswiak DR, Liu XQ, Zhao HB, He JQ. Post-depositional enrichment of black soot in snow-pack and accelerated melting of Tibetan glaciers. Environmental Research Letters. 2012;7(1).

  91. Li CL, Bosch C, Kang SC, Andersson A, Chen PF, Zhang QG, et al. Sources of black carbon to the Himalayan-Tibetan Plateau glaciers. Nat Commun. 2016;7.

  92. Wang X, Wei HL, Liu J, Xu BQ, Wang M, Ji MX, et al. Quantifying the light absorption and source attribution of insoluble light-absorbing particles on Tibetan Plateau glaciers between 2013 and 2015. Cryosphere. 2019;13(1):309–24.

    Google Scholar 

  93. Nussbaumer SU, Zumbuhl HJ. The Little Ice Age history of the Glacier des Bossons (Mont Blanc massif, France): a new high-resolution glacier length curve based on historical documents. Clim Chang. 2012;111(2):301–34.

    Google Scholar 

  94. Vincent C, Le Meur E, Six D, Funk M. Solving the paradox of the end of the Little Ice Age in the Alps. Geophys Res Lett. 2005;(9):32.

  95. Zumbuhl HJ, Steiner D, Nussbaumer SU. 19th century glacier representations and fluctuations in the central and western European Alps: an interdisciplinary approach. Glob Planet Chang. 2008;60(1–2):42–57.

    Google Scholar 

  96. Kerschner H. Statistical modelling of equilibrium-line altitudes of Hintereisferner, central Alps, Austria, 1859–present. Ann Glaciol. 1997;24:111–5.

    Google Scholar 

  97. Wang X, Pu W, Zhang X, Ren Y, Huang J. Water-soluble ions and trace elements in surface snow and their potential source regions across northeastern China. Atmos Environ. 2015;114:57–65.

    CAS  Google Scholar 

  98. Zhang R, Hegg DA, Huang J, Fu Q. Source attribution of insoluble light-absorbing particles in seasonal snow across northern China. Atmos Chem Phys. 2013;13(12):6091–9.

    Google Scholar 

  99. Zhao C, Hu Z, Qian Y, Leung LR, Huang J, Huang M, et al. Simulating black carbon and dust and their radiative forcing in seasonal snow: a case study over North China with field campaign measurements. Atmos Chem Phys. 2014;14(20):11475–91.

    Google Scholar 

  100. Wang ZW, Gallet JC, Pedersen CA, Zhang XS, Strom J, Ci ZJ. Elemental carbon in snow at Changbai Mountain, northeastern China: concentrations, scavenging ratios, and dry deposition velocities. Atmos Chem Phys. 2014;14(2):629–40.

    Google Scholar 

  101. Flanner MG, Liu X, Zhou C, Penner JE, Jiao C. Enhanced solar energy absorption by internally-mixed black carbon in snow grains. Atmos Chem Phys. 2012;12(10):4699–721.

    CAS  Google Scholar 

  102. He CL, Takano Y, Liou KN, Yang P, Li QB, Chen F. Impact of snow grain shape and black carbon-snow internal mixing on snow optical properties: parameterizations for climate models. J Clim. 2017;30(24):10019–36.

    Google Scholar 

  103. Liou KN, Takano Y, He C, Yang P, Leung LR, Gu Y, et al. Stochastic parameterization for light absorption by internally mixed BC/dust in snow grains for application to climate models. J Geophys Res-Atmos. 2014;119(12):7616–32.

    CAS  Google Scholar 

  104. Liou KN, Takano Y, Yang P. Light absorption and scattering by aggregates: application to black carbon and snow grains. J Quant Spectrosc Ra. 2011;112(10):1581–94.

    CAS  Google Scholar 

  105. He CL, Li QB, Liou KN, Takano Y, Gu Y, Qi L, et al. Black carbon radiative forcing over the Tibetan Plateau. Geophys Res Lett. 2014;41(22):7806–13.

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Cenlin He to provide the updated SNICAR snow model codes. We deeply thank the reviewer’s valuable comments and suggestions. The data used for analysis are available via a Zenodo archive, which can be found in the references (https://doi.org/10.5281/zenodo.3871677).

Funding

This research was supported jointly by the National Key R&D Program of China (2019YFA0606801) and the National Natural Science Foundation of China (41975157, 41775144, and 41875091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Wang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Air Pollution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Shi, T., Zhang, X. et al. An Overview of Snow Albedo Sensitivity to Black Carbon Contamination and Snow Grain Properties Based on Experimental Datasets Across the Northern Hemisphere. Curr Pollution Rep 6, 368–379 (2020). https://doi.org/10.1007/s40726-020-00157-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-020-00157-1

Keywords

Navigation