Skip to main content
Log in

Terahertz dual-band/broadband metamaterial absorber enabled by SiO2: polyimide and PET dielectric substrates with absorption characteristics

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

A compact dual-band/broadband polarization in-sensitive terahertz (THz) metamaterial absorber (MMA) is discussed in this article. It consists of a simple planar structure as a unit cell and an optically transparent indium tin oxide (ITO) ground plane, which are separated by a 50 µm dielectric substrate. We designed three combinations of MMA, which are ITO–SiO2–ITO, ITO–polyimide–ITO and ITO–polyethylene terephthalate (PET)–ITO for the same planar structure. The proposed structure has dual-band absorbance with peak absorptivity of >98% for all three given combinations. By changing the substrate of the structure, the resonant frequency and bandwidth of the absorber structure is varied and by adjusting the design parameters, broadband absorbance is achieved for the same planar structure. The numerical simulation of the absorber shows that the broadband absorptivity is >98% for all three substrates. Polyimide, PET and SiO2 based absorbers are demonstrated with bandwidth of 0.467, 0.527 and 0.6 THz with covered broadband frequency range of 0.390–0.857, 0.407–0.934 and 0.433–1.03 THz, respectively. ITO–PET–ITO absorber structures also possess optical transparency. These bandwidths are convenient and compatible with electronic and magnetic sources in the terahertz region. This study provides applications in THz detection, sensing, bolometric imaging, and stealth and communication systems. All three absorbers have greater absorbance characteristics for transverse electric and transverse magnetic polarizations. The proposed structure is working well for wide angles of incident and polarization angles wave up to 90°.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Woodward R M, Cole B E, Wallace V P, Pye R J, Arnone D D, Linfield E H et al 2002 Phys. Med. Biol. 47 3853

    Article  Google Scholar 

  2. Fischer B M, Hoffmann M, Helm H, Wilk R, Rutz F, Kleine-Ostmann T et al 2005 Opt. Express 13 5205

    Article  CAS  Google Scholar 

  3. Ferguson B and Zhang X C 2002 Nat. Mater. 1 26

    Article  CAS  Google Scholar 

  4. Cui Y, He Y, Jin Y, Ding F, Yang L, Ye Y et al 2014 Laser Photon. Rev. 8 495

    Article  CAS  Google Scholar 

  5. Aydin K, Ferry V E, Briggs R M and Atwater H A 2011 Nat. Commun. 2 517

    Article  Google Scholar 

  6. Li S, Gao J, Cao X, Zhang Z, Zheng Y and Zhang C 2015 Opt. Express 23 3523

    Article  CAS  Google Scholar 

  7. Wu D, Liu C, Liu Y, Yu L, Yu Z, Chen L et al 2017 Opt. Lett. 42 450

    Article  CAS  Google Scholar 

  8. Cheng Y, Mao X S, Wu C, Wu L and Gong R 2016 Opt. Mater. 53 195

    Article  CAS  Google Scholar 

  9. De Regis M, Bartalini S, Ravaro M, Calonico D, De Natale P and Consolino L 2018 Phys. Rev. Appl. 10 064041

    Article  Google Scholar 

  10. Ke B, Zhu W T, Lei M and Zhou J 2015 Appl. Phys. Lett. 106 173507

    Article  Google Scholar 

  11. Salvatore S, David S and Padilla W J 2011 Adv. Opt. Mater. 2 275

    Google Scholar 

  12. Muhammad N, Khan A D, Deng Z L, Khan K, Yadav A, Liu Q et al 2017 Nanomaterials 7 397

    Article  Google Scholar 

  13. Rosenberg J, Shenoi R V, Krishna S, Vandervelde T E and Painter O 2009 Appl. Phys. Lett. 95 161101

    Article  Google Scholar 

  14. Wang B-X, He Y, Lou P and Xing W 2020 Nanoscale Adv. 2 763

    Article  CAS  Google Scholar 

  15. Fang N, Lee H, Sun C and Zhang X 2005 Science 308 534

    Article  CAS  Google Scholar 

  16. Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F et al 2006 Science 314 977

    Article  CAS  Google Scholar 

  17. Elakkiya A, Radha S, Manikandan E and Sreeja B S 2019 JOAM 21 450

    Google Scholar 

  18. Elakkiya A, Radha S, Sreeja B S and Manikandan E 2018 JOAM 20 474

    CAS  Google Scholar 

  19. Wang B X, Zhai X, Wang G Z, Huang W Q and Wang L L 2015 IEEE Photon. J. 7 4600108

    Google Scholar 

  20. Liu C, Qi L and Zhang X 2018 AIP Adv. 8 015301

    Article  Google Scholar 

  21. Guo W, Liu Y and Han T 2016 Opt. Express. 24 20586

    Article  CAS  Google Scholar 

  22. Cheng Y Z, Nie Y and Gong R Z 2013 Opt. Laser Technol. 48 415

    Article  CAS  Google Scholar 

  23. Luo H and Cheng Y Z 2017 Mod. Phys. Lett. B 31 1750231

    Article  CAS  Google Scholar 

  24. Wang B X 2016 IEEE J. Sel. Top. Quantum Electron. 23 1

    Article  Google Scholar 

  25. Cheng Y, Zou H, Yang J, Mao X and Gong R 2018 Opt. Mater. Express 8 3104

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Elakkiya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elakkiya, A., Radha, S., Sreeja, B.S. et al. Terahertz dual-band/broadband metamaterial absorber enabled by SiO2: polyimide and PET dielectric substrates with absorption characteristics. Bull Mater Sci 43, 201 (2020). https://doi.org/10.1007/s12034-020-02183-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02183-7

Keywords

Navigation