Skip to main content

Advertisement

Log in

Mechanical, thermal and fatigue behaviour of surface-treated novel Caryota urens fibre–reinforced epoxy composite

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Epoxy biocomposites were prepared using acid-, base- and silane-treated novel Caryota urens natural fibres (CUFs). The primary aim of this research is to reveal a better surface treatment method to achieve improved mechanical, thermal and fatigue properties of Caryota fibre epoxy composite system. The composites were prepared using hand layup method and post cured at 120 °C for 48 h. The tensile, flexural and impact results show that the silane surface–treated Caryota urens fibre–reinforced epoxy composite possesses improved mechanical properties than the base- and acid-treated Caryota urens fibres in the epoxy composite. Similarly, the inter-laminar shear strength (ILSS) of silane-treated Caryota urens–reinforced epoxy composite gives the highest value of 28 MPa. The TGA shows a large mass loss for both acid- and base-treated Caryota urens epoxy composites whereas the silane-treated Caryota urens in epoxy composite retains the thermal stability. The fatigue behaviour of silane surface–modified Caryota urens epoxy composite shows the highest fatigue life cycle of 18,315 for 25% of maximum tensile stress. The SEM micrographs show improved adhesion for silane-treated CUF than those treated with acid and base. This Caryota urens fibre–reinforced epoxy composite could be used in automobile body parts, domestic appliances, defence products and lightweight mini-aircrafts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pattanaik L, Naik SN, Hariprasad P (2019) Valorization of waste Indigofera tinctoria L biomass generated from indigo dye extraction process—potential towards biofuels and compost. Biomass Conv Bioref 9:445–457. https://doi.org/10.1007/s13399-018-0354-2

    Article  Google Scholar 

  2. Merizgui T, Hadjadj A, Kious M, Gaoui B (2020) Electromagnetic shielding effectiveness improvement with high temperature in far-field behaviour multiwall carbon nanotube/iron (III) particles addition in composites. Polym Compos 1–9. https://doi.org/10.1002/pc.25665

  3. Gruber H, Groß P, Rauch R, Reichhold A, Zweiler R, Aichernig C, Müller S, Ataimisch N, Hofbauer H (2019) Fischer-Tropsch products from biomass-derived syngas and renewable hydrogen. Biomass Conv Bioref. https://doi.org/10.1007/s13399-019-00459-5

  4. Murugan MA, Jayaseelan V, Jayabalakrishnan D, Maridurai T, Kumar SS, Ramesh G, Prakash VRA (2019) Low velocity impact and mechanical behaviour of shot blasted SiC wire-mesh and silane-treated aloe vera/hemp/flax-reinforced SiC whisker modified epoxy resin composites. Silicon. 12:1847–1856. https://doi.org/10.1007/s12633-019-00297-0

    Article  Google Scholar 

  5. Obi Reddy K, Uma Maheswari C, Mukul S, Song JI, Varada Rajulu A (2013) Tensile and structural characterization of alkali treated Borassus fruit fine fibres. Compos Part B Engg 44(1):433–438. https://doi.org/10.1016/j.compositesb.2012.04.075

    Article  Google Scholar 

  6. Uma Maheswari C, Obi Reddy K, Muzenda E, Varada Rajulu A (2012) Tensile and thermal properties of polycarbonate-coated tamarind fruit fibres. Int J Polym Anal Charact 17(8):578–589. https://doi.org/10.1080/1023666X.2012.718527

    Article  Google Scholar 

  7. Alavudeen A, Thiruchitrambalam M, Venkateshwaran N, Athijayamani A (2010) Review of natural fibre reinforced woven composite. Rev Adv Mater Sci 27:146–150. https://doi.org/10.1080/15440478.2010.529299

    Article  Google Scholar 

  8. Krishnan GS et al (2020) Investigation of Caryota urens fibres on physical, chemical, mechanical and tribological properties for brake pad applications. Mater Res Exp 7:015310

    Article  Google Scholar 

  9. Shetty R, Pai R, Barboza ABV, Gandhi VP (2018) Processing, mechanical characterization and its tribological study of discontinuously reinforced Caryota urens fibre polyester composites. ARPN J Eng Appl Sci 13(12):3920–3928

    Google Scholar 

  10. Vincent VA, Kailasanathan C, Shanmuganathan VK, Kumar JVSP, Arun Prakash VR (2020) Strength characterization of caryota urens fibre and aluminium 2024-T3 foil multi-stacking sequenced SiC toughened epoxy structural composite. Biomass Conv Bioref. https://doi.org/10.1007/s13399-020-00831-w

  11. Arun Prakash VR, Viswanathan R (2019) Fabrication and characterization of silanized echinoidea fillers and kenaf fibre-reinforced Azadirachta-indica blended epoxy multi-hybrid biocomposite. Int J Plast Technol 23:207–217. https://doi.org/10.1007/s12588-019-09251-6

    Article  Google Scholar 

  12. Nanda S, Mohammad J, Reddy SN, Kozinski JA, Dalai AK (2014) Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass Conv. Bioref. 4:157–191. https://doi.org/10.1007/s13399-013-0097-z

    Article  Google Scholar 

  13. Canizares D, Angers P, Ratti C (2020) Flax and wheat straw waxes: material characterization, process development, and industrial applications. Biomass Conv Bioref 10:555–565. https://doi.org/10.1007/s13399-019-00441-1

    Article  Google Scholar 

  14. Arun Prakash VR, Rajadurai A (2017) Inter laminar shear strength behaviour of acid, base and silane treated E-glass fibre epoxy resin composites on drilling process. Def Technol 13(1):40–46. https://doi.org/10.1016/j.dt.2016.11.004

    Article  Google Scholar 

  15. Merizgui T, Hadjadj A, Kious M, Arun Prakash VR (2020) Effect of temperature and frequency on microwave shielding behaviour of functionalized kenaf fibre-reinforced MWCNTs/iron(III) oxide modified epoxy hybrid composite. Trans Electr Electron Mater 21:366–376. https://doi.org/10.1007/s42341-020-00179-y

    Article  Google Scholar 

  16. Arun Prakash VR, Rajadurai A (2016) Thermo-mechanical characterization of siliconized E-glass fibre/hematite particles reinforced epoxy resin hybrid composite. Appl Surf Sci 384:99–106. https://doi.org/10.1016/j.apsusc.2016.04.185

    Article  Google Scholar 

  17. Merizgui T, Hadjadj A, Kious M, Gaoui B (2019) Impact of temperature variation on the electromagnetic shielding behaviour of multilayer shield for EMC applications. Rev Compos Matér Av 29(6):363–367. https://doi.org/10.18280/rcma.290604

    Article  Google Scholar 

  18. Tang P, Hassan O, Yue CS et al (2020) Lignin extraction from oil palm empty fruit bunch fibre (OPEFBF) via different alkaline treatments. Biomass Conv Bioref 10:125–138. https://doi.org/10.1007/s13399-019-00413-5

    Article  Google Scholar 

  19. Anand P, Rajesh D, Senthil Kumar M, Saran Raj I (2018) Investigations on the performances of treated jute/Kenaf hybrid natural fibre reinforced epoxy composite. J Polym Res 25:94–99. https://doi.org/10.1007/s10965-018-1494-6

    Article  Google Scholar 

  20. Chen B, Luo Z, Cai T, Cai D, Zhang C, Qin P, Cao H (2018) The effect of corn varieties on the production of fibre-reinforced high-density polyethylene composites. Biomass Conv Bioref 8:953–963. https://doi.org/10.1007/s13399-018-0337-3

    Article  Google Scholar 

  21. Obi OF (2015) Evaluation of the physical properties of composite briquette of sawdust and palm kernel shell. Biomass Conv. Bioref. 5:271–277. https://doi.org/10.1007/s13399-014-0141-7

    Article  Google Scholar 

  22. Ben AM, El Mahi A, Rebiere JL, Beyaoui M, Abdennadher M, Haddar M Tensile fatigue behaviour of carbon-flax/epoxy hybrid composites. In: Fakhfakh T, Karra C, Bouaziz S, Chaari F, Haddar M (eds) Advances in Acoustics and Vibration II. ICAV 2018. Applied Condition Monitoring,13, vol 2019. Springer, Cham, pp 1–17. https://doi.org/10.1155/2019/9624670

  23. Soosai M, Thankian C, Thangiah WJJ, Nagarajan R, Kalimuthu M, Ismail SO, Mohammad F (2020) Characterization of novel lignocellulosic Spinifex littoreus fibres and their composites. J Bionic Eng 17:393–404. https://doi.org/10.1007/s42235-020-0032-5

    Article  Google Scholar 

  24. Alkateb M, Sapuan SM, Leman Z, Jawaid M, Ishak MR (2017) Energy absorption capacities of kenaf fibre-reinforced epoxy composite elliptical cones with circumferential holes. Fibres Polym 18:1187–1192. https://doi.org/10.1007/s12221-017-1244-0

    Article  Google Scholar 

  25. Arun Prakash VR, Viswanthan R (2019) Fabrication and characterization of echinoidea spike particles and kenaf natural fibre-reinforced Azadirachta-Indica blended epoxy multi-hybrid bio composite. Compos Part A Appl Sci 118:317–326. https://doi.org/10.1007/s12588-019-09251-6

    Article  Google Scholar 

  26. Shivamurthy B, Murthy K, Joseph PC, Rishi K, Bhat KU, Anandhan S (2015) Mechanical properties and sliding wear behaviour of Jatropha seed cake waste/epoxy composites. J Mater Cycles Waste Manag 17:144–156. https://doi.org/10.1007/s10163-014-0235-0

    Article  Google Scholar 

  27. Arun Prakash VR, Jayaseelan V, Mothilal T et al (2019) Effect of silicon coupling grafted ferric oxide and E-glass fibre in thermal stability, wear and tensile fatigue behaviour of epoxy hybrid composite. Silicon. https://doi.org/10.1007/s12633-019-00347-7

  28. Hamdi WJ, Habubi NF (2018) Preparation of epoxy chicken eggshell composite as thermal insulation. J Aust Ceram Soc 54:231–235. https://doi.org/10.1007/s41779-017-0145-4

    Article  Google Scholar 

  29. Ben Samuel J, Julyes Jaisingh S, Sivakumar K, Mayakannan AV, Arunprakash VR (2020) Visco-elastic, thermal, antimicrobial and dielectric behaviour of areca fibre-reinforced nano-silica and neem oil-toughened epoxy resin bio composite. Silicon. https://doi.org/10.1007/s12633-020-00569-0

  30. Syamimi NF, Islam MR, Sumdani MG, Rashidi NM (2020) Mechanical and thermal properties of snail shell particles-reinforced bisphenol-A bio-composites. Polym Bull 77:2573–2589. https://doi.org/10.1007/s00289-019-02878-w

    Article  Google Scholar 

  31. Mivehchi H, Varvani-Farahani A (2010) The effect of temperature on fatigue damage of FRP composites. J Mater Sci 45:3757–3767. https://doi.org/10.1007/s10853-010-4425-4

    Article  Google Scholar 

  32. Hacker CL, Ansell MP (2001) Fatigue damage and hysteresis in wood-epoxy laminates. J Mater Sci 36:609–621. https://doi.org/10.1023/A:1004812202540

    Article  Google Scholar 

  33. El Sawi I, Fawaz Z, Zitoune R et al (2014) An investigation of the damage mechanisms and fatigue life diagrams of flax fibre-reinforced polymer laminates. J Mater Sci 49:2338–2346. https://doi.org/10.1007/s10853-013-7934-0

    Article  Google Scholar 

  34. Sodoke FK, Toubal L, Laperrière L (2016) Hygrothermal effects on fatigue behaviour of quasi-isotropic flax/epoxy composites using principal component analysis. J Mater Sci 51:10793–10805. https://doi.org/10.1007/s10853-016-0291-z

    Article  Google Scholar 

Download references

Acknowledgments

The authors of this research work have deeply acknowledged the work rendered from Metro Composites Research and Development Centre, Chennai, India. www.metrocomposites.org, metrocompositesrd@gmail.com.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. R. Arun Prakash.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arun Prakash, V.R., Xavier, J.F., Ramesh, G. et al. Mechanical, thermal and fatigue behaviour of surface-treated novel Caryota urens fibre–reinforced epoxy composite. Biomass Conv. Bioref. 12, 5451–5461 (2022). https://doi.org/10.1007/s13399-020-00938-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-00938-0

Keywords

Navigation