Synlett 2020; 31(20): 1957-1961
DOI: 10.1055/s-0040-1706411
synpacts
© Georg Thieme Verlag Stuttgart · New York

Embedding Heteroatoms and Adjacent Pentagons in Concave Molecules

Gang Zhang
This work was supported by the Jiangsu Specially Appointed Professor Plan.
Further Information

Publication History

Received: 29 June 2020

Accepted after revision: 11 July 2020

Publication Date:
10 August 2020 (online)


Abstract

Bowl-shaped molecules, which can be viewed as fragments of fullerenes, have been extensively studied owing to their interesting fundamental properties derived from their unique geometry, and the possibilities for their further functionalization, with potential applications in the field of materials science. Most of the reported concave compounds are based on corannulene or sumanene, the simplest representative fullerene subunits possessing isolated pentagons. Syntheses of concave molecules bearing adjacent pentagons have rarely been reported. Inspired by the structure of N-heterotriangulene, the construction of bowl-shaped compounds containing two fused pentagons and a central nitrogen atom is discussed. Further surface extension of such concave molecules can result in the formation of boat-shaped compounds containing embedded double isolated nitrogen atoms.

 
  • References

    • 1a Barth WE, Lawton RG. J. Am. Chem. Soc. 1966; 88: 380
    • 1b Lawton RG, Barth WE. J. Am. Chem. Soc. 1971; 93: 1730
    • 1c Hanson JC, Nordman CE. Acta Crystallogr., Sect. B 1976; 32: 1147
  • 3 Sakurai H, Daiko T, Hirao T. Science 2003; 301: 1878
  • 4 Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE. Nature 1985; 318: 162
    • 5a Scott LT, Jackson EA, Zhang Q, Steinberg BD, Bancu M, Li B. J. Am. Chem. Soc. 2012; 134: 107
    • 5b Wu T.-C, Chen M.-K, Lee Y.-W, Kuo M.-Y, Wu Y.-T. Angew. Chem. Int. Ed. 2013; 52: 1289
    • 5c Kawasumi K, Zhang Q, Segawa Y, Scott LT, Itami K. Nat. Chem. 2013; 5: 739
    • 5d Dutta AK, Linden A, Zoppi L, Baldridge KK, Siegel JS. Angew. Chem. Int. Ed. 2015; 54: 10792
    • 5e Fujikawa T, Preda DV, Segawa Y, Itami K, Scott LT. Org. Lett. 2016; 18: 3992
    • 5f Wang Y, Allemann O, Balaban TS, Vanthuyne N, Linden A, Baldridge KK, Siegel JS. Angew. Chem. Int. Ed. 2018; 57: 6470
    • 5g Shoyama K, Würthner F. J. Am. Chem. Soc. 2019; 141: 13008
    • 5h Zhu Z.-Z, Chen Z.-C, Yao Y.-R, Cui C.-H, Li S.-H, Zhao X.-J, Zhang Q, Tian H.-R, Xu P.-Y, Xie F.-F, Xie X.-M, Tan Y.-Z, Deng S.-L, Quimby JM, Scott LT, Xie S.-Y, Huang R.-B, Zheng L.-S. Sci. Adv. 2019; 5: eaaw0982
    • 5i Lin H.-A, Sato Y, Segawa Y, Nishihara T, Sugimoto N, Scott LT, Higashiyama T, Itami K. Angew. Chem. Int. Ed. 2018; 57: 2874
    • 5j Liu Y.-M, Xia D, Li B.-W, Zhang Q.-Y, Sakurai T, Tan Y.-Z, Seki S, Xie S.-Y, Zheng L.-S. Angew. Chem. Int. Ed. 2016; 55: 13047
    • 5k Meng D, Liu G, Xiao C, Shi Y, Zhang L, Jiang L, Baldridge KK, Li Y, Siegel JS, Wang Z. J. Am. Chem. Soc. 2019; 141: 5402
    • 6a Imamura K, Takimiya K, Otsubo T, Aso Y. Chem. Commun. 1999; 1859
    • 6b Tsefrikas VM, Greene AK, Scott LT. Org. Chem. Front. 2017; 4: 688
    • 6c Ito S, Tokimaru Y, Nozaki K. Angew. Chem. Int. Ed. 2015; 54: 7256
    • 6d Yokoi H, Hiraoka Y, Hiroto S, Sakamaki D, Seki S, Shinokubo H. Nat. Commun. 2015; 6: 8215
    • 6e Yokoi H, Hiroto S, Sakamaki D, Seki S, Shinokubo H. Chem. Sci. 2018; 9: 819
    • 6f Higashibayashi S, Pandit P, Haruki R, Adachi S.-i, Kumai R. Angew. Chem. Int. Ed. 2016; 55: 10830
    • 6g Tan Q, Higashibayashi S, Karanjit S, Sakurai H. Nat. Commun. 2012; 3: 891
    • 6h Tan Q, Kaewmati P, Higashibayashi S, Kawano M, Yakiyama Y, Sakurai H. Bull. Chem. Soc. Jpn. 2018; 91: 531
    • 6i Li X, Zhu Y, Shao J, Wang B, Zhang S, Shao Y, Jin X, Yao X, Fang R, Shao X. Angew. Chem. Int. Ed. 2014; 53: 535
    • 6j Furukawa S, Suda Y, Kobayashi J, Kawashima T, Tada T, Fujii S, Kiguchi M, Saito M. J. Am. Chem. Soc. 2017; 139: 5787
    • 6k Wang S, Li X, Hou X, Sun Y, Shao X. Chem. Commun. 2016; 52: 14486
    • 6l Tanikawa T, Saito M, Guo JD, Nagase S, Minoura M. Eur. J. Org. Chem. 2012; 7135
    • 6m Furukawa S, Kobayashi J, Kawashima T. J. Am. Chem. Soc. 2009; 131: 14192
    • 6n Tan Q, Zhou D, Zhang T, Liu B, Xu B. Chem. Commun. 2017; 53: 10279
    • 6o Zhou D, Gao Y, Liu B, Tan Q, Xu B. Org. Lett. 2017; 19: 4628
    • 6p Wang S, Yan C, Shang J, Wang W, Yuan C, Zhang H.-L, Shao X. Angew. Chem. Int. Ed. 2019; 58: 3819
    • 6q Wang S, Shang J, Yan C, Wang W, Yuan C, Zhang H.-L, Shao X. Org. Chem. Front. 2019; 6: 263
  • 7 Mishra S, Krzeszewski M, Pignedoli CA, Ruffieux P, Fasel R, Gryko DT. Nat. Commun. 2018; 9: 1714
  • 8 Guan R, Chen M, Jin F, Yang S. Angew. Chem. Int. Ed. 2020; 59: 1048
    • 9a Wang CR, Kai T, Tomiyama T, Yoshida T, Kobayashi Y, Nishibori E, Takata M, Sakata M, Shinohara H. Nature 2000; 408: 426
    • 9b Stevenson S, Fowler PW, Heine T, Duchamp JC, Rice G, Glass T, Harich K, Hajdu E, Bible R, Dorn HC. Nature 2000; 408: 427
    • 9c Liu F, Wang S, Gao C.-L, Deng Q, Zhu X, Kostanyan A, Westerström R, Jin F, Xie S.-Y, Popov AA, Greber T, Yang S. Angew. Chem. Int. Ed. 2017; 56: 1830
    • 9d Xie S.-Y, Gao F, Lu X, Huang R.-B, Wang C.-R, Zhang X, Liu M.-L, Deng S.-L, Zheng L.-S. Science 2004; 304: 699
    • 9e Gao C.-L, Li X, Tan Y.-Z, Wu X.-Z, Zhang Q.-Y, Xie S.-Y, Huang R.-B. Angew. Chem. Int. Ed. 2014; 53: 7853
    • 10a Summerscales OT, Cloke FG. N. Coord. Chem. Rev. 2006; 250: 1122
    • 10b Boyt SM, Jenek NA, Hintermair U. Dalton Trans. 2019; 48: 5107
  • 11 Deng N, Zhang G. Org. Lett. 2019; 21: 5248
  • 12 Zhou L, Zhang G. Angew. Chem. Int. Ed. 2020; 59: 8963
  • 13 Liu R, Gao H, Zhou L, Ji Y, Zhang G. ChemistrySelect 2019; 4: 7797
  • 14 Xu X, Xing Y, Shang Z, Wang G, Cai Z, Pan Y, Zhao X. Chem. Phys. 2003; 287: 317