Skip to main content
Log in

Synthesis of BiFeO3 nanoparticles for the photocatalytic removal of chlorobenzene and a study of the effective parameters

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Pure BiFeO3 (BFO) was synthesized by the sol–gel auto combustion technique, then X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM), Diffusion reflecting spectroscopy (DRS) and Brunauer–Emmett–Teller (BET) methods used for its characterization. The XRD analysis revealed that BFO nanoparticles were relatively pure and the average crystallite size was about 20 nm. Observation of FE-SEM images of synthesized BFO nanoparticles, the presence of porous structure confirmed. The amount of bandgap energy prepared BFO was calculated 2.15 eV by DRS analysis. BET results showed the specific surface area of synthesized BFO was 55.071 m2 g−1. Photocatalytic removal of chlorobenzene (CB) by prepared BFO and UV light in the self-designed batch photoreactor studied. Effect of concentration of CB, humidity, and light intensity evaluated. The studies of different parameters have individual effects on the removal of CB. The highest removal of CB was 87.92% under conditions, 1600 mg L−1 of CB, 12 W UV light; 1770 mg immobilized BFO on glass plates, and 10% humidity. The prepared nanoparticle's efficiency for the removal of CB was better than TiO2 nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Maghsoodi S, Towfighi J, Khodadadi A, Mortazavi Y (2013) The effects of excess manganese in nano-size lanthanum manganite perovskite on enhancement of trichloroethylene oxidation activity. Chem Eng J 215:827–837

    Article  Google Scholar 

  2. Yang SB, Yu SB, Kim JS, Jo WK (2011) Alternative use of light emitting diodes in an activated charcoal-supported photocatalyst reactor for the control of volatile organic compounds. Chin J Catal 32(5):756–761

    Article  CAS  Google Scholar 

  3. Debono O, Thévenet F, Gravejat P, Héquet V, Raillard C, Le Coq LN, Locoge N (2013) Gas phase photocatalytic oxidation of decane at ppb levels: removal kinetics, reaction intermediates and carbon mass balance. J Photochem Photobiol A 258:17–29

    Article  CAS  Google Scholar 

  4. Destaillats H, Sleiman M, Sullivan PD, Jacquiod C, Sablayrolles J, Molins L (2012) Key parameters influencing the performance of photocatalytic oxidation (PCO) air purification under realistic indoor conditions. Appl Catal B 128:159–170

    Article  CAS  Google Scholar 

  5. Akpan UG, Hameed BH (2009) Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J Hazard Mater 170(2):520–529

    Article  CAS  PubMed  Google Scholar 

  6. Mo J, Zhang Y, Xu Q, Lamson JJ, Zhao R (2009) Photocatalytic purification of volatile organic compounds in indoor air: a literature review. Atmos Environ 43(14):2229–2246

    Article  CAS  Google Scholar 

  7. Mousali E, Zanjanchi MA (2020) Loading of nickel phthalocyanine onto functionalized mesoporous KIT-6 solid support: an efficient visible photocatalyst for the degradation of 2, 4-dichlorophenol. React Kinet Mech Cat 130:547–566

    Article  CAS  Google Scholar 

  8. Benbachir H, Gaffour H, Mokhtari M (2017) Photodegradation of 2, 4, 6-trichlorophenol using natural hematite modified with chloride of zirconium oxide. React Kinet Mech Cat 122(1):635–653

    Article  CAS  Google Scholar 

  9. Wang C, Xi JY, Hu HY (2008) Chemical identification and acute biotoxicity assessment of gaseous chlorobenzene photodegradation products. Chemosphere 73(8):1167–1171

    Article  CAS  PubMed  Google Scholar 

  10. Zhang L, Sawell S, Moralejo C, Anderson WA (2007) Heterogeneous photocatalytic decomposition of gas-phase chlorobenzene. Appl Catal B 71(3):135–142

    Article  CAS  Google Scholar 

  11. Wang HC, Lin YH, Feng YN, Shen Y (2013) Photocatalytic behaviors observed in Ba and Mn doped BiFeO3 nanofibers. J Electroceram 31(1–2):271–274

    Article  CAS  Google Scholar 

  12. Seeley Z, Choi YJ, Bose S (2009) Citrate–nitrate synthesis of nano-structured titanium dioxide ceramics for gas sensors. Sens Actuators B 140(1):98–103

    Article  CAS  Google Scholar 

  13. Bhagwat VR, Humbe AshokV, More SD, Jadhav KM (2019) Sol-gel auto combustion synthesis and characterizations of cobalt ferrite nanoparticles: Different fuels approach. Mater Sci Eng B 248:114388

    Article  CAS  Google Scholar 

  14. Phani A, Santucci S (2001) Structural characterization of nickel titanium oxide synthesized by sol–gel spin coating technique. Thin Solid Films 396(1):1–4

    Article  CAS  Google Scholar 

  15. Deganello F, Marcì G, Deganllo M (2009) Citrate–nitrate auto-combustion synthesis of perovskite-type nanopowders: a systematic approach. J Eur Ceram Soc 29(3):439–450

    Article  CAS  Google Scholar 

  16. Kalaivani GJ, Suja SK (2016) TiO2 (rutile) embedded inulin—A versatile bio-nanocomposite for photocatalytic degradation of methylene blue. Carbohyd Polym 143:51–60

    Article  Google Scholar 

  17. Fathinia M, Khataee AR, Zarei M, Aber S (2010) Comparative photocatalytic degradation of two dyes on immobilized TiO2 nanoparticles: effect of dye molecular structure and response surface approach. J Mol Catal 333:73–84

    Article  CAS  Google Scholar 

  18. Azough F, Freer R, Thrall M, Cernik R (2010) Microstructure and properties of Co-, Ni-, Zn-, Nb-and W-modified multiferroic BiFeO3 ceramics. J Eur Ceram Soc 30(3):727–736

    Article  CAS  Google Scholar 

  19. Aber S, Mehrizade H, Khataee AR (2011) Preparation of ZnS nanocrystal and investigation of its photocatalytic activity in removal of CI acid blue 9 from contaminated water. Desalin Water Treat 28(1–3):92–96

    Article  CAS  Google Scholar 

  20. Aghdam TR, Mehrizadeh H, Salari D, Tseng HH, Niaei A, Amini A (2018) Photocatalytic removal of NOx over immobilized BiFeO3 nanoparticles and effect of operational parameters. Korean J Chem Eng 35:994–999

    Article  CAS  Google Scholar 

  21. Ibhadon AO, Fitzpatrick P (2013) Heterogeneous photocatalysis: recent advances and applications. Catalysts 3(1):189–218

    Article  CAS  Google Scholar 

  22. Ramezanalizadeh H, Manteghi F (2017) Immobilization of mixed cobalt/nickel metal-organic framework on a magnetic BiFeO3: a highly efficient separable photocatalyst for degradation of water pollutions. J Photochem Photobiol A 346:89–104

    Article  CAS  Google Scholar 

  23. Soltani T, Lee BK (2016) Novel and facile synthesis of Ba-doped BiFeO3 nanoparticles and enhancement of their magnetic and photocatalytic activities for complete degradation of benzene in aqueous solution. J Hazard Mater 316:122–133

    Article  CAS  PubMed  Google Scholar 

  24. Anand KV, Chinnu MK, Kumar RM, Mohan R, Jayavel R (2009) Formation of zinc sulfide nanoparticles in HMTA matrix. Appl Surf Sci 255(21):8879–8882

    Article  CAS  Google Scholar 

  25. Korologos CA, Philippopoulos CJ, Poulopoulos SG (2011) The effect of water presence on the photocatalytic oxidation of benzene, toluene, ethylbenzene and m-xylene in the gas-phase. Atmos Environ 45(39):7089–7095

    Article  CAS  Google Scholar 

  26. Mehrizadeh H, Niaei A, Tseng HH, Salari D, Khataee A (2017) Synthesis of ZnFe2O4 nanoparticles for photocatalytic removal of toluene from gas phase in the annular reactor. J Photochem Photobiol A 332:188–195

    Article  CAS  Google Scholar 

  27. Joo JC, Ahn CH, Jang DG, Yoon YH, Kim JK, Campos L, Ahn H (2013) Photocatalytic degradation of trichloroethylene in aqueous phase using nano-ZNO/Laponite composites. J Hazard Mater 263:569–574

    Article  CAS  PubMed  Google Scholar 

  28. Behnajady MA, Modirshahla N, Mirzamohammady M, Vahid B, Behnajady B (2008) Increasing photoactivity of titanium dioxide immobilized on glass plate with optimization of heat attachment method parameters. J Hazard Mater 160(2):508–513

    Article  CAS  PubMed  Google Scholar 

  29. Zhong L, Haghighat F, Lee CH, Lakdawala N (2013) Performance of ultraviolet photocatalytic oxidation for indoor air applications: systematic experimental evaluation. J Hazard Mater 261:130–138

    Article  CAS  PubMed  Google Scholar 

  30. Zou W, Gao B, Ok YS, Dong L (2019) Integrated adsorption and photocatalytic degradation of volatile organic compounds (VOCs) using carbon-based nanocomposites: a critical review. Chemosphere 218:845–859

    Article  CAS  PubMed  Google Scholar 

  31. Shayegan Z, Lee CS, Haghighat F (2018) TiO2 photocatalyst for removal of volatile organic compounds in gas phase: a review. Chem Eng J 334:2408–2439

    Article  CAS  Google Scholar 

  32. Zhao J, Yang X (2003) Photocatalytic oxidation for indoor air purification: a literature review. Build Environ 38(5):645–654

    Article  Google Scholar 

  33. Tseng HH, Wei MC, Hsiung SF, Chiou CW (2009) Degradation of xylene vapor over Ni-doped TiO2 photocatalysts prepared by polyol-mediated synthesis. Chem Eng J 150(1):160–167

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of the Tabriz University of Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariush Salari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amini Herab, A., Salari, D., Tseng, HH. et al. Synthesis of BiFeO3 nanoparticles for the photocatalytic removal of chlorobenzene and a study of the effective parameters. Reac Kinet Mech Cat 131, 437–452 (2020). https://doi.org/10.1007/s11144-020-01834-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01834-4

Keywords

Navigation